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1 Introduction

I’ve searched all the parks in all the cities and found no statues of committees. — Quote

attributed to Gilbert K. Chesterton

Committees are ubiquitous decision-making institutions. They shape monetary policy (Federal

Reserve Board), the safety assessment of pharmaceutical drugs (FDA advisory committees), and ver-

dicts in criminal trials (juries). A classical argument for committees, formalized by de Condorcet

(1785), is that they aggregate dispersed private information and thereby outperform any single deci-

sion maker.

This optimistic view is fragile in standard theory. Beginning with Austen-Smith and Banks

(1996) and Feddersen and Pesendorfer (1996, 1997), a large literature shows that even in common-

value environments, incentives need not support sincere voting or efficient information aggregation

once one departs from knife-edge conditions.1 In contrast, experimental evidence often finds that

committees work surprisingly well: communication is more informative and voting is less strategic

than Bayesian equilibrium would suggest, and resulting decisions are unusually accurate.2 A central

question is why committee behavior appears systematically closer to “truthful communication and

sincere voting” than standard strategic models predict, and what this implies for modeling delibera-

tion and information use in collective choice.

We study this question in a laboratory committee environment with private information, a cheap-

talk communication stage, and subsequent voting under either majority or unanimity rule. Each

subject receives a private signal about the state of the world, sends a binary message, observes the

messages of the other committee members, and then votes. Payoffs combine a common-value com-

ponent that rewards the committee for matching the state with an expressive component that rewards

the individual for voting for a particular option. The expressive motive creates sharp incentives to

misrepresent private information and to vote strategically, and thus provides a stringent test of the

empirical prevalence of non-strategic communication and voting.

The experimental design and data are shared with a companion paper (Breitmoser and Valasek,

2024), which studies the institutional implications of majority versus unanimity in the presence of

expressive incentives. The present paper instead takes the strategic environment as given and uses

the joint distribution of messages and votes to diagnose which departures from Bayesian equilibrium

are empirically useful for organizing committee behavior. The two-stage structure delivers sharp

cross-stage restrictions: many candidate forces can rationalize high truth-telling in isolation, but

they make distinct predictions for how subjects should use message profiles when voting, precisely

because expressive incentives make strategic considerations salient at both stages. Our contribution

is therefore methodological as well as substantive: we show how to use voting behavior conditional
1Information aggregation can fail for reasons including the decision rule (Feddersen and Pesendorfer, 1998), correlated
errors (Palley and Soll, 2019), uncertainty about the signal structure (Mandler, 2012), departures from preference mono-
tonicity (Bhattacharya, 2013), uncertainty about the size of the electorate (Ekmekci and Lauermann, 2019), or additional
payoff components such as bribery (Dal Bó, 2007), preferences for winning (Callander, 2007, 2008), moral payoffs (Fed-
dersen et al., 2009), partisan expressive motives (Morgan and Várdy, 2012), or accountability for individual votes (Midjord
et al., 2017, 2021).

2For a seminal reference, see Goeree and Yariv (2011).
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on communication to discipline behavioral hypotheses about belief formation and information use in

committees.

Our main empirical findings are straightforward. First, communication is close to fully truthful

even in information sets where Bayesian equilibrium predicts substantial strategic misreporting. Sec-

ond, subjects correctly anticipate this truthfulness. This combination is difficult to reconcile with

limited-depth accounts that rely on systematic distrust of messages. Third, voting responds too

strongly to both private signals and observed message profiles relative to Bayesian best responses

given the estimated degree of truth-telling. This excessive responsiveness is inconsistent not only

with Bayesian equilibrium, but also with a pure “lying-aversion” explanation that fixes communica-

tion while leaving Bayesian best-response voting intact. Taken together, the data suggest that com-

mittees are accurate because members communicate honestly and then behave as if the informational

content of signals and messages were higher than under the objective signal structure.

Motivated by extensive evidence that individuals deviate from Bayesian updating, we analyze

a parsimonious belief distortion that overweights new information when forming posteriors (recent

discussions include Bordalo et al., 2020; Afrouzi et al., 2023). In our setting, such overweighting

implies that a subject places too much weight on her own signal when messaging and, conditional

on largely truthful communication, too much weight on the public message profile when voting. The

same mechanism can therefore account for both unusually truthful communication and unusually

strong responsiveness of votes to message majorities. We embed this distortion in a simple structural

framework by extending logit quantal response equilibrium, which allows us to use the full set of

observed message and vote frequencies to quantify how much systematic variation is captured by

each behavioral component.

A natural alternative interpretation is that subjects underweight base rates, effectively treating the

prior as less salient than sample information. In our framework this concern is closely related to the

overweighting channel: systematic downweighting of the prior can be represented as overweighting

likelihood information. The data are informative because voting behavior conditional on message

profiles pins down the implied mapping from public information to posterior beliefs. In the empiri-

cal and structural sections we therefore report diagnostics that translate observed voting frequencies

into implied posteriors and compare these to Bayesian benchmarks. This comparison distinguishes

between near-complete prior neglect and a more moderate but systematic overweighting of new in-

formation, and it clarifies which dimensions of non-Bayesian belief formation are needed to organize

behavior in a strategic committee environment.

The paper makes three contributions. First, we document that committee decisions are sub-

stantially more accurate than Bayesian equilibrium predicts in a setting with strong incentives for

strategic communication and voting, and we show that this accuracy reflects both high truth-telling

and strong reliance on message majorities. Second, we use the two-stage structure of the game to

distinguish between explanations that operate primarily through communication (such as lying aver-

sion) and those that operate through belief formation and information use at the voting stage; the

key identifying content comes from the joint restrictions linking message frequencies to subsequent

votes. Third, we provide a parsimonious structural account based on a one-parameter belief distor-
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tion layered onto logit QRE, and we quantify how much of the observed choice-frequency variation

it captures. Beyond the laboratory, our findings speak to a broader modeling lesson: allowing for

disciplined departures from Bayesian information processing can be essential for explaining why de-

liberative bodies sometimes appear to aggregate information effectively even when standard strategic

incentives point in the opposite direction.

The remainder of the paper is organized as follows. Section 2 presents the model and the ex-

perimental design. Section 3 reports the experimental results and documents the central empirical

regularities in communication and voting. Section 4 provides the structural analysis and quantifies

the relative explanatory power of the candidate behavioral components. Section 5 concludes and dis-

cusses natural targets for future experimental designs aimed at sharper causal identification of belief

distortions in committee settings.

1.1 Related literature

Our experiment builds on the experimental literature on information aggregation in committees and

juries. Early laboratory studies analyze voting under different decision rules without pre-play com-

munication (Guarnaschelli et al., 2000; Ali et al., 2008). Allowing for communication prior to voting,

Goeree and Yariv (2011) study collective deliberation and document what they term “overcommuni-

cation”: messages are more informative than equilibrium incentives would suggest, and committees

often reach accurate decisions. Related evidence with heterogeneous preferences is provided by

Le Quement and Marcin (2020). Our environment adds an explicit expressive voting motive, which

sharpens strategic incentives and connects to experimental work that studies expressive payoffs di-

rectly (Ginzburg et al., 2022). Relative to this literature, the distinctive feature of our analysis is

that we use the joint distribution of communication and subsequent voting to discipline a behavioral

account of why committees work unexpectedly well: vote choices conditional on message profiles

reveal how subjects map public deliberation into posterior beliefs and actions.

A second strand concerns why communication in cheap-talk settings is often more truthful than

benchmark equilibrium predicts. Outside committees, experiments in sender–receiver and strategic

information transmission games document systematic truth-telling and receiver belief-in-the-message

behavior that is difficult to reconcile with purely strategic accounts (Gneezy, 2005; Charness and

Dufwenberg, 2006; Cai and Wang, 2006; Sánchez-Pagés and Vorsatz, 2007). Prominent explana-

tions emphasize non-standard preferences over messages (lying aversion and related social-image or

guilt motives) or limited strategic reasoning. In committee environments, such forces can rational-

ize unusually truthful messages, but they are less directly informative about how subjects process

message profiles when voting. Our two-stage setting turns this observation into an empirical lever:

conditional voting behavior provides restrictions that separate “communication-only” explanations

from models in which belief formation and information use depart from Bayesian benchmarks.

The present paper focuses on belief formation and information use after communication. A large

body of evidence in psychology and economics documents systematic deviations from Bayesian up-

dating, including base-rate neglect and excessive responsiveness to recent signals (Kahneman and
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Tversky, 1973; Bar-Hillel, 1980; Tversky and Kahneman, 1982). Recent work in economics devel-

ops formal and empirical accounts of overreaction to information in applied contexts (Bordalo et al.,

2020; Afrouzi et al., 2023). Our aim is not to adjudicate among the many proposed non-Bayesian up-

dating models, but to capture, in a parsimonious way, the direction and magnitude of responsiveness

to new information in a strategic committee setting. To do so, we introduce a simple belief-distortion

parameter that scales the weight placed on signals and messages relative to Bayesian benchmarks, and

we embed this distortion in a logit quantal response framework for extensive-form games (McKelvey

and Palfrey, 1998). This allows us to use both messaging and voting frequencies, and the cross-stage

restrictions linking them, to quantify how much systematic variation in behavior is explained by a

single reduced-form deviation in belief updating.

Finally, we emphasize that our experiment was not tailored to discriminate sharply among com-

peting non-Bayesian updating models. Axiomatic and structural approaches to non-Bayesian updat-

ing offer a rich set of alternatives (Epstein, 2006; Sandroni et al., 2008; Ortoleva, 2012; Massari,

2021; De Filippis et al., 2022). Distinguishing among them would naturally call for additional ex-

perimental levers, for example varying priors or the information structure to generate environments

in which different forms of under- versus overreaction yield contrasting predictions. In the absence

of such levers, our contribution is to show that a single-parameter belief distortion, layered onto a

standard stochastic best-response model, provides a disciplined and empirically successful account

of the joint patterns of truth-telling and voting in committees with expressive incentives. We view

this as complementary to the companion paper (Breitmoser and Valasek, 2024): that paper asks how

voting rules perform under expressive incentives, whereas we use the same environment to measure

how agents depart from Bayesian information processing in a way that matters for collective choice.

2 Theory and Experimental Design

2.1 The voting game

We study a three-member Condorcet committee with a pre-vote cheap-talk stage and expressive pay-

offs. Nature draws a state ω ∈ {R(ed),B(lue)}. A committee of N = 3 experts i ∈ {1,2,3} receives

conditionally independent private signals si ∈ {R,B} with accuracy

Pr(si = ω | ω) = α, α ∈ (1/2,1), (1)

i.i.d. across experts conditional on ω. In the experiment we set α = 0.6. All experts share a common

prior p0 = Pr(ω = R), which is uninformative in the experiment: p0 = 1/2.

After observing si, each expert sends a binary message mi ∈ {R,B}. After observing the message

profile m = (m1,m2,m3), each expert simultaneously submits a vote vi ∈ {R,B} (no abstention). A

voting rule D∈ {Majority,Unanimity} maps the vote profile v= (v1,v2,v3) into a committee decision

X ∈ {R,B}.

Payoffs combine a common-value component and an expressive component. Let C > 0 denote
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the payoff from a correct committee decision and let K ∈ (0,C) denote the expressive payoff from

voting for R, irrespective of the state and the committee decision. Terminal payoffs are

πi(X ,ω,vi) = C ·1{X = ω} + K ·1{vi = R}. (2)

We assume risk-neutral preferences.3

The timing is: (i) Nature draws ω and signals (si)
3
i=1; (ii) experts observe si and simultaneously

send messages (mi)
3
i=1; (iii) experts observe m and simultaneously submit votes (vi)

3
i=1; (iv) votes are

aggregated and payoffs accrue.

Under Majority, the committee chooses B if and only if at least two experts vote B, and chooses

R otherwise. Under Unanimity, our experiment allows multiple rounds to reach unanimity.4 For

theoretical exposition we follow Breitmoser and Valasek (2024) and use a reduced-form “default-

R” convention: the committee chooses B if and only if all experts vote B; otherwise the committee

chooses R. (In particular, any failure to attain unanimity for B is treated as selecting R.)

We restrict attention to symmetric (behavioral) strategies. A symmetric strategy profile is a pair

(σ,τ) where σ : {R,B} → [0,1] is a messaging rule with σ(s) equal to the probability of sending

message R after signal s, and τ is a voting rule with τ(s,mi,M) equal to the probability of voting

R after private signal s, own message mi, and message-profile summary M = #{ j : m j = B} (the

total number of B-messages in the committee).5 The expressive payoff K generates a collective-

action problem: when an expert is unlikely to be pivotal, she strictly prefers voting R regardless of

information. This tension produces strategic incentives both in messaging and in voting and is central

for distinguishing behavioral explanations.

2.2 Behavioral models and predictions

This section fixes a small set of behavioral models and records the corresponding point predictions

used in the empirical analysis. The models are designed to perturb one component of standard strate-

gic behavior at a time: belief formation (overreaction), preferences over messages (lying aversion),

or strategic reasoning (level-k). In every case we impose symmetry and sequential optimality given

the model’s beliefs and preferences. When a model admits multiple symmetric predictions, we select

a single point prediction using the limiting-logit procedure formalized in Appendix A.4 (Defini-

tion 10) and implemented numerically in Appendix A.7. The role of this selection is purely to make

the quantitative comparisons in Tables 1–2 unambiguous.

Baseline concepts. We begin by fixing the benchmark equilibrium notion and the refinement used

when we need a unique point prediction.

3With risk aversion, the risky common-value term effectively receives less weight relative to the sure expressive term,
strengthening incentives to vote R and thereby working against information aggregation.

4This approximates deliberation via straw polls (see Guarnaschelli et al., 2000; Goeree and Yariv, 2011).
5Given mi and M, expert i can infer the number of B-messages sent by the other two experts.
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Table 1: Summary of theoretical predictions: Majority

Messages Voting
si = R si = B M = 0 M = 1 M = 2 M = 3

Majority 40-10
Equilibrium × ×
Lying Aversion ×
Overreaction ×
Level-K (1) × × × ×
Level-L (1) ×
Altruism × ×

Majority 35-15
Equilibrium × × × ×
Lying Aversion × ×
Overreaction ×
Level-K (1) × × × ×
Level-L (1) × ×
Altruism × ×

Note: For the overreaction row in Tables 1–2, we report the limit κ → ∞ (“perfect overreaction”)
to highlight sharp qualitative contrasts. The Appendix reports the general κ case and the numerical
method used to compute predictions.
For Messages: indicates truthful message, and × indicates non-truthful message. For Voting:

indicates that the committee votes with the majority of messages with over 50% probability,
and × indicates that the committee votes with the majority of messages with under 50% probabil-
ity. Highlighted cells indicate that predictions differ from “Equilibrium.”

Table 2: Summary of theoretical predictions: Unanimity

Messages Voting
si = R si = B S = 0 S = 1 S = 2 S = 3

Unanimity 40-10
Equilibrium × × ×
Lying Aversion ×
Overreaction
Level-K (1) × × × ×
Level-L (1) ×
Altruism

Unanimity 35-15
Equilibrium × × ×
Lying Aversion ×
Overreaction
Level-K (1) × × × ×
Level-L (1) ×
Altruism

Note: For Messages: indicates truthful message, and × indicates non-truthful mes-
sage. For Voting: indicates that the committee votes with the majority of signals
with over 50% probability, and × indicates that the committee votes with the majority
of signals with under 50% probability. Highlighted cells indicate that predictions dif-
fer from “Equilibrium.”

Definition 1 (Benchmark equilibrium). Our benchmark notion is symmetric sequential equilibrium

of Γ with Bayesian beliefs.

For some parameterizations, symmetric sequential equilibrium is not single-valued, and certain be-

havioral benchmarks (e.g. distorted beliefs combined with stochastic choice) generate a family of
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admissible predictions indexed by a “precision” parameter. We therefore use logit quantal response

as a disciplined way to select a point prediction.

Definition 2 (Logit quantal response equilibrium). Fix a behavioral specification (Bayesian beliefs or

distorted beliefs). A symmetric logit QRE is a symmetric assessment in which, at every information

set I, each feasible action a is chosen with probability

Pr(a | I) =
exp{λEU(a | I)}

∑a′∈A(I) exp{λEU(a′ | I)}
,

where EU(· | I) denotes the action’s continuation payoff under the assessment and λ > 0 is a payoff-

sensitivity parameter. When we require a single point prediction, we use the limiting-logit selection

as λ → ∞ (Appendix A.4, Definition 10).

Preference- and payoff-based benchmarks. The next two benchmarks shut down a specific strate-

gic force by assumption: lying aversion eliminates message manipulation, and altruism eliminates

the expressive motive.

Definition 3 (Lying aversion). The lying-aversion benchmark fixes truthful messaging: σ(R) = 1 and

σ(B) = 0. Voting is then chosen to be sequentially rational given Bayesian beliefs and the induced

informativeness of messages.

Definition 4 (Altruism). The altruism benchmark sets the expressive motive aside: agents behave as

if K = 0, equivalently choosing strategies that maximize Pr(X = ω).

Overreaction as a belief distortion. Our main belief-based deviation is a one-parameter distortion

of Bayesian posteriors. The distortion is chosen to (i) move posteriors monotonically in the direction

of the Bayesian posterior and (ii) scale log-odds by a single parameter, which yields transparent

comparative statics. Let I denote any information set (after observing the private signal, or after

observing the message profile). Write

q(I) = Pr(ω = B | I)

for the Bayesian posterior under the true signal structure and the strategy profile under consideration.

For κ > 0, define

Tκ(q) =
qκ

qκ +(1−q)κ
, q ∈ [0,1], (3)

so that posterior odds satisfy Tκ(q)
1−Tκ(q)

=
( q

1−q

)κ. The Bayesian benchmark corresponds to κ = 1.

Values κ > 1 generate overreaction (posteriors become more extreme), while κ ∈ (0,1) would corre-

spond to underreaction.

Definition 5 (κ-overreaction). Fix κ ≥ 1. In the κ-overreaction model, at every information set

I, agents evaluate expected payoffs using the distorted posterior q̂κ(I) = Tκ(q(I)) in place of the

Bayesian posterior q(I). The mapping Tκ and parameter κ are common knowledge.

7



The “perfect overreaction” benchmark corresponds to κ → ∞; in that limit any Bayesian posterior

strictly above (below) 1/2 is perceived as certainty for B (R).

The next lemma collects two properties used repeatedly below: Tκ is monotone in the Bayesian

posterior, and for posteriors that already favor B (resp. R), increasing κ pushes beliefs further toward

certainty for B (resp. R).

Lemma 1 (Extremeness and the limit case). For any q ∈ (0,1), Tκ(q) is strictly increasing in q.

Moreover, if q > 1/2, then Tκ(q) is strictly increasing in κ and limκ→∞ Tκ(q) = 1; if q < 1/2, it is

strictly decreasing in κ and limκ→∞ Tκ(q) = 0.

Proof. Monotonicity in q follows from differentiating (3) or from the odds representation. For the

comparative statics in κ, note that

Tκ(q)
1−Tκ(q)

=
( q

1−q

)κ

.

If q > 1/2 then q
1−q > 1, so the right-hand side is strictly increasing in κ and diverges to +∞ as

κ → ∞, implying Tκ(q) ↑ 1. If q < 1/2 then q
1−q < 1, so the right-hand side is strictly decreasing in κ

and converges to 0, implying Tκ(q) ↓ 0.

Interpretation. With prior 1/2, the Bayesian posterior after a private signal equals α for the realized

signal. For κ > 1, the agent behaves as if signals (and likewise informative message profiles) were

more precise, since Tκ(α) > α and, more generally, Tκ(q) lies farther from 1/2 than q whenever

q ̸= 1/2.

Level-k benchmarks. We also consider two bounded-reasoning benchmarks that modify strate-

gic reasoning rather than preferences or beliefs. These are not equilibrium concepts: each agent is

assumed to be sequentially optimal given a misspecified belief about opponents’ play.

Definition 6 (Level-k). In the level-k benchmark with k = 1, agents best respond at both stages to

the belief that opponents randomize uniformly, i.e. they believe σ(·) = 1/2 and τ(·, ·, ·) = 1/2.

Definition 7 (Level-ℓ). In the level-ℓ benchmark with ℓ = 1, agents best respond to the belief that

opponents communicate truthfully and randomize uniformly when voting, i.e. they believe σ(R) = 1,

σ(B) = 0, and τ(·, ·, ·) = 1/2.

A key voting-stage implication

A central identifying contrast in the paper is that, holding (near) truthful communication fixed, over-

reaction predicts amplified responsiveness to message profiles at the voting stage relative to Bayesian

best responses. The reason is simple: under Majority, voting R yields the expressive payoff regardless

of whether the vote is pivotal, whereas voting B sacrifices that payoff and is rewarded only through
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the event of being pivotal. Appendix A.4 formalizes this “pivotality times posterior advantage” de-

composition (Lemma 2). The proposition below states the corresponding voting threshold under

κ-overreaction and highlights the comparative statics in κ.

Fix Majority and a voting-stage information set I (after observing si, the own message, and the

message profile). Let q(I) = Pr(ω = B | I) be the Bayesian posterior, q̂κ(I) = Tκ(q(I)) the distorted

posterior, and let π(I) ∈ (0,1] denote the probability that expert i is pivotal at I given opponents’

strategies.

Proposition 1 (Overreaction amplifies responsiveness in voting). Fix an information set I with π(I)>

0. Under κ-overreaction, voting B is optimal at I if and only if

q̂κ(I) ≥ 1
2
+

K
2π(I)C

. (4)

Moreover, whenever q(I) > 1/2, the left-hand side q̂κ(I) = Tκ(q(I)) is increasing in κ, so (4) is

(weakly) easier to satisfy for κ > 1 than for κ = 1. Thus, conditional on information that favors B,

overreaction weakly increases the propensity to vote for B.

Proof. Voting R yields the expressive payoff K regardless of whether the vote is pivotal. The

common-value payoff depends on the vote only if the agent is pivotal: conditional on pivotality,

voting B yields expected common-value payoff Cq̂κ(I), while voting R yields C(1− q̂κ(I)). Hence

the expected gain from voting B rather than R equals

π(I)C
(
2q̂κ(I)−1

)
−K.

Voting B is optimal if and only if this gain is nonnegative, which is equivalent to (4). If q(I) > 1/2,

then Lemma 1 implies q̂κ(I) is increasing in κ, so the inequality becomes weakly easier to satisfy as

κ rises.

Overview predictions and experimental parameterization

The experiment varies the strength of expressive incentives. The low expressive-payoff treatment

uses (α,K,C) = (0.6,10,40) and the high expressive-payoff treatment uses (α,K,C) = (0.6,15,35).

These parameterizations change the welfare trade-off between inducing votes that support informa-

tion aggregation and the private benefit from voting R. In particular, in the low treatment the efficient

committee action conditional on the signal profile coincides with following the (posterior) majority

of signals, whereas in the high treatment it is efficient to select B only when all three signals are B.

Tables 1–2 report predicted choice frequencies under each behavioral model for these experimen-

tal parameters. For overreaction we also report the limit κ → ∞ (“perfect overreaction”) to highlight

sharp qualitative contrasts. Appendix A.7 reports the numerical procedure and the full predicted

strategy components for general κ. Several models admit multiple symmetric equilibria under these

parameters, especially under Unanimity (where B requires unanimous B votes). In those cases we

apply the limiting-logit selection in Definition 2 (see Appendix A.4, Definition 10).
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At a high level, the comparative statics under Majority are as follows. In the benchmark equi-

librium, communication is strategically distorted and voting is weakly responsive to informative

message profiles because the expressive payoff depresses the incentive to be pivotal for B (see Ap-

pendix A.4, Lemma 2 for the underlying voting decomposition, and Propositions 3–2 for the pa-

rameterized benchmark predictions). Lying aversion fixes communication to be truthful but leaves

the pivotality logic intact, so it predicts limited voting with the informational majority even when

messages reveal strong evidence for B (Appendix A.4, Proposition 4). Overreaction instead distorts

posteriors in a direction that makes informative evidence feel more decisive, thereby increasing both

the propensity to report in line with one’s signal and the propensity to vote with the informational ma-

jority of messages (Proposition 1, together with the monotone comparative statics in Appendix A.4,

Lemma 6). Under the bounded-reasoning benchmarks, level-k predicts babbling communication to-

gether with voting dominated by the expressive motive, while level-ℓ inherits truthful communication

by assumption but implies weak use of message profiles at the voting stage.

We next provide additional detail for our three main concepts—Benchmark equilibrium, Lying

aversion, and Overreaction—for the Majority rule. Throughout, recall that τ(s,m,M) denotes the

probability of voting R (so τ = 0 corresponds to voting B with certainty).

Benchmark equilibrium (Majority). We begin with symmetric sequential equilibrium under Bayesian

beliefs. Under Majority, the expressive payoff is earned whenever one votes R, while the vote affects

the committee outcome only through pivotality. The resulting collective-action problem is most

transparent at information sets where public information strongly favors B: if experts were to com-

municate truthfully and then vote mechanically with the message majority, then in those profiles each

expert would anticipate that the others vote B with high probability, making her rarely pivotal; the

sure expressive payoff would then make deviation to R attractive. Anticipating weak voting incen-

tives precisely in the most informative profiles, equilibrium messaging becomes strategic: B-types

sometimes send R to reduce the frequency with which they (and others) would face the trade-off

between forgoing K and inducing an accurate B decision.

Under the experimental high expressive-payoff calibration, this force can fully unravel aggre-

gation: there exists a symmetric sequential equilibrium in which all players vote R at every voting

information set, rendering messages payoff-irrelevant on path (Appendix A.4, Proposition 2). Under

the low expressive-payoff calibration, we report the limiting-logit Bayesian point prediction (Ap-

pendix A.4, Proposition 3).

Prediction 1 (Equilibrium: Majority). For low expressive payoffs, the limiting-logit Bayesian point

prediction has σ(R) = 1, σ(B) = 0.56 and experts vote for B if and only if M = 2 and si = B (i.e.

τ(B,B,2) = 0, and τ(·, ·, ·) = 1 otherwise). For high expressive payoffs, experts babble in the message

stage (σ(R) = σ(B) = 0.5) and vote R for all message profiles (τ(·, ·, ·) = 1). These values correspond

to Appendix A.4, Propositions 3–2, with computation in Appendix A.7.

Lying aversion (Majority). Lying aversion fixes truthful messaging by assumption, σ(R) = 1 and

σ(B) = 0, thereby eliminating strategic manipulation at the communication stage. The voting stage
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nevertheless inherits the pivotality logic. With truthful messages, the message profile reveals the

signal profile, so the posterior in favor of B is maximized at (B,B,B). Even there, voting B need

not be optimal with probability one: if one expects the other two experts to vote B with sufficiently

high probability, pivotality is sufficiently unlikely that the sure expressive payoff from voting R can

dominate. Appendix A.4, Proposition 4 provides the exact implication under our experimental cali-

brations, including the unique symmetric mixed equilibrium at BBB in the low treatment.

Prediction 2 (Lying Aversion: Majority). By definition, experts communicate truthfully (σ(R) = 1,

σ(B) = 0). For low expressive payoffs, experts vote for B only if M = 3, and at M = 3 they vote

R with probability τ(B,B,3) = 1−q⋆ ≈ 0.3595 (equivalently, vote B with probability q⋆ ≈ 0.6405),

while τ(·, ·, ·) = 1 otherwise. For high expressive payoffs, experts vote R for all message profiles

(τ(·, ·, ·) = 1). See Appendix A.4, Proposition 4.

Overreaction (Majority). Overreaction modifies beliefs rather than incentives: experts remain

sequentially optimal, but evaluate expected payoffs under distorted posteriors. Two implications

follow.

First, at the voting stage, Proposition 1 shows that the decision rule depends on q̂κ(I) = Tκ(q(I)).

Compared to κ = 1, a larger κ increases q̂κ(I) whenever the Bayesian posterior favors B, making

it easier to justify sacrificing the expressive payoff in favor of an accurate B decision. In this sense

overreaction counteracts the pivotality problem by making the perceived stakes of choosing the wrong

alternative larger.

Second, at the messaging stage, overreaction makes private information feel more decisive. With

prior 1/2, an expert who observes si has Bayesian posterior Pr(ω= si | si) =α, but under overreaction

she perceives Tκ(α) > α (Lemma 1). The perceived expected loss from inducing an incorrect com-

mittee decision through a strategic misreport therefore increases. Moreover, because overreaction

raises voting-stage responsiveness, messages are perceived as more consequential for final outcomes,

which further strengthens incentives to report in line with the signal.

Prediction 3 (Overreaction: Majority). With overreaction, experts communicate strategically after

signal B, but at a much lower rate than under Equilibrium (σ(R) = 1; low expressive payoffs σ(B) =

0.10; high expressive payoffs σ(B) = 0.28). For both low and high expressive payoffs, experts who

message B vote for B with certainty if M = 2 and with positive probability if M = 3 (i.e. τ(B,B,2) = 0;

low expressive payoffs τ(B,B,3) = 0.15; high expressive payoffs τ(B,B,3) = 0.31). These values

correspond to the limiting-logit point prediction for the distorted-belief logit-QRE (Definitions 2 and

5); see Appendix A.7 for the computation.

Comparing Lying aversion and Overreaction clarifies why the voting stage is essential for dis-

crimination. Both concepts can accommodate highly truthful messages. However, with Bayesian

voting (lying aversion), pivotality keeps the incentive to vote R strong exactly in profiles where oth-

ers are expected to vote B, so voting with the informational majority remains limited (Appendix A.4,

Proposition 4). With overreaction, distorted beliefs raise q̂κ(I) precisely in those profiles, and Propo-

sition 1 implies a higher propensity to vote with the informational majority of messages, especially
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when expressive incentives would otherwise induce strategic R voting.

2.3 Experimental design

The experimental design is shared with a companion paper that studies institutional implications of

majority versus unanimity voting in the presence of expressive incentives (Breitmoser and Valasek,

2024). The present paper takes the environment as given and uses the resulting joint patterns of mes-

sages and votes to discipline behavioral explanations. The identifying variation is a 2× 2 between-

subjects design that varies (i) the decision rule (Majority vs. Unanimity) and (ii) the strength of

expressive incentives (Low vs. High). The decision rule shifts pivotality and therefore strategic vot-

ing incentives; the expressive incentive shifts the severity of the collective-action problem. Together,

these variations generate sharp differences in predicted behavior across communication and voting,

which we exploit throughout the theoretical and empirical analysis.

The experiment closely follows Guarnaschelli et al. (2000) and Goeree and Yariv (2011). We

use neutral language throughout, represent uncertainty via urns and ball draws, and provide feedback

on the realized state and payoffs after each game. The sessions were conducted at the WZB/TU

experimental laboratory in Berlin in May, June, and November 2016. Subjects were recruited using

ORSEE (Greiner, 2015) and the experiment was programmed in z-Tree (Fischbacher, 2007). A

translation of the instructions and a composite screenshot are provided in Appendix B.

Treatments and payoffs. Table 3 summarizes the four treatments. In all treatments, the common-

value payoff C (earned if the committee decision matches the true state) and the expressive payoff K

(earned if the subject votes for R) satisfy C+K = 50 points. In the Low treatments, (C,K) = (40,10);

in the High treatments, (C,K) = (35,15). The calibration is chosen so that the incentive to vote

expressively remains salient even in information sets with relatively favorable public information for

B (as discussed in Section 2.2). Signal precision is constant across treatments and equal to α = 0.6.

Table 3: Overview of experimental treatments

Label Decision rule C K #Subjects #Sessions #Games

Majority-Low Majority 40 10 48 4 50
Majority-High Majority 35 15 45 4 50
Unanimity-Low Unanimity 40 10 45 4 50
Unanimity-High Unanimity 35 15 48 4 50

Subjects were paid the sum of points accumulated across all 50 games; one point corresponded

to one euro cent in all treatments. Sessions lasted between 75 and 105 minutes, and average earnings

were between 19 and 22 Euros across sessions.

Information and salience. Each game begins with an explicit presentation of uncertainty and in-

centives. The prior over states is fixed and uninformative (p0 = 1/2), and the signal structure is

conveyed using urns and ball draws, with the instructions stating the signal accuracy (α = 0.6). The
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payoff parameters (C,K) are displayed in points and remain constant within a session. These features

are made salient at the time of decision making: subjects observe their private signal before sending

a message, and the payoff consequences of (i) matching the true state and (ii) voting for R are shown

in the interface and reiterated in the instructions and control questions. This matters for interpretation

later, because it limits the scope for explanations based purely on misunderstanding of the prior or

the signal structure.

Procedures. We ran 16 sessions in total (four per treatment). Fourteen sessions had 12 participants

and two sessions had 9 participants; participants were seated randomly upon arrival. An experimental

assistant distributed printed instructions and read them aloud. Subjects then completed computerized

control questions; the experiment did not start until all participants answered all questions correctly.

Subjects played 50 games in committees of size three (N = 3), with random rematching after each

game. After each game, subjects received feedback on the realized state, the committee decision, and

their payoff. The feedback screen also reported the realized signal profile and aggregate behavior in

the session.

Under Majority, each game proceeded as follows: subjects observed their private signal si ∈
{R,B}, simultaneously sent a public message mi ∈ {R,B}, observed the message profile, and then

simultaneously submitted a vote vi ∈ {R,B}. Under Unanimity, the timing was identical up to the

voting stage, but subjects were given up to three voting attempts to reach unanimity. If unanimity was

not reached after the third vote, the game ended with a default committee decision of R (equivalently,

all subjects were assigned a default vote of R).

Upon completion of the experiment, subjects were paid individually in a separate room.

Identifying moments. The design generates a small set of particularly informative conditional fre-

quencies because it produces sharp changes in (i) incentives to misreport in the messaging stage and

(ii) incentives to vote against information in the voting stage, while holding fixed the signal structure

and the salience of payoffs. First, the expressive payoff K creates information sets in which strategic

considerations predict systematic distortions in communication: when an expert’s signal is B, sending

message R can be privately valuable because it reduces the likelihood that the committee selects B

in profiles where an individual would otherwise be tempted to vote R for expressive reasons. Hence,

the frequency of mi = R conditional on si = B (and how this frequency changes between the Low and

High treatments) is an informative measure of the extent to which subjects respond strategically to

the collective-action problem at the communication stage.

Second, conditional on a given message profile, the voting rule changes pivotality and therefore

the strength and location of incentives to vote expressively. Under Majority, pivotality is concentrated

in knife-edge profiles; under Unanimity with a default-R outcome, the committee selects B only if all

votes are B, which changes both the pivotal events and the mapping from vote profiles to outcomes.

As a result, the same observed message profile can imply different strategic incentives across rules

even when beliefs are held fixed. Comparing vote frequencies across Majority and Unanimity, con-

ditioning on message profiles and the subject’s own signal, therefore provides additional restrictions
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beyond what message truthfulness alone can deliver.

Third, the two stages jointly tighten identification. Many explanations can rationalize high truth-

telling in isolation (for example, a preference for honesty), but they differ in their implications for

voting once truth-telling is anticipated. In particular, if messages are believed to be highly informa-

tive, then Bayesian best-response voting with expressive incentives predicts substantial strategic R

voting in message profiles that favor B, because pivotality is limited. By contrast, belief distortions

that overweight new information predict systematically stronger responsiveness to message profiles

in the voting stage. Accordingly, the empirical object that disciplines the behavioral analysis is the

joint distribution of (mi,vi) conditional on (si,M) across treatments, rather than any single behavioral

margin.

3 Empirical Analysis

We organize the empirical analysis around four questions. First, are committee decisions as accurate

as predicted by the benchmark models? Second, is communication consistent with the strategic and

behavioral incentives embedded in those models? Third, conditional on communication, is voting

consistent with (Bayesian or distorted) best responses? Fourth, which deviations from the benchmark

are most useful for jointly organizing messages and votes?

3.1 Are committees as efficient as predicted?

Table 4 reports average behavior by treatment. Table 5 then translates behavior into an information-

aggregation metric: the relative frequency with which the committee decision coincides with the

majority of private signals.6

The benchmark logic is straightforward. Under Majority, accurate aggregation is achieved if ex-

perts vote in line with their information when pivotal. Under Unanimity with a default-R outcome,

accuracy additionally requires that informative messages translate into B votes when warranted; oth-

erwise a single R vote (or a failure to reach unanimity) induces R. Expressive payoffs create an

incentive to vote R even when information favors B, and (paradoxically) more informative commu-

nication can facilitate such expressive voting: the more precisely experts infer others’ signals, the

easier it is to identify information sets in which voting R secures the expressive bonus while being

unlikely to change the outcome. In this sense, even a force that increases truth-telling (such as lying

aversion) need not increase decision accuracy once voting incentives are taken into account.

Against this background, the most accuracy-friendly benchmark in our theoretical menu is the

equilibrium selected by our ex ante payoff criterion, which predicts accuracy rates of 0.617, 0.500,

0.640, and 0.640 across treatments (Table 5). Observed accuracy is substantially higher. Across

treatments, and separately for inexperienced and experienced play (first versus second half of each

6Because payoffs include an expressive component, this “efficiency” measure is best interpreted as an index of information
aggregation rather than welfare. It is, however, the natural accuracy benchmark for a Condorcet-style environment with
conditionally independent signals.
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Table 4: Observed choices in the experiment

Messages Voting
σ(R) σ(B) τ(R,R,0) τ(B,R,0) τ(R,R,1) τ(R,B,1) τ(B,B,1) τ(B,R,1) τ(R,R,2) τ(R,B,2) τ(B,B,2) τ(B,R,2) τ(R,B,3) τ(B,B,3)

Observations across treatments
Majority 40-10 0.9

(0.01)
0.16
(0.01)

0.98
(0.01)

0.77
(0.06)

0.94
(0.01)

0.86
(0.06)

0.92
(0.02)

0.82
(0.04)

0.64
(0.03)

0.68
(0.06)

0.44
(0.02)

0.51
(0.08)

0.55
(0.11)

0.31
(0.03)

Majority 35-15 0.79
(0.01)

0.13
(0.01)

0.98
(0.01)

0.92
(0.06)

0.96
(0.01)

0.91
(0.04)

0.92
(0.02)

0.78
(0.05)

0.75
(0.03)

0.94
(0.02)

0.6
(0.02)

0.69
(0.06)

0.84
(0.04)

0.32
(0.03)

Unanimity 40-10 0.96
(0.01)

0.14
(0.01)

0.99
(0)

0.88
(0.05)

0.94
(0.01)

0.76
(0.11)

0.94
(0.01)

0.91
(0.03)

0.28
(0.03)

0.53
(0.12)

0.26
(0.02)

0.26
(0.08)

0.17
(0.11)

0.02
(0.01)

Unanimity 35-15 0.94
(0.01)

0.14
(0.01)

1
(0)

0.95
(0.03)

0.96
(0.01)

0.59
(0.12)

0.92
(0.02)

0.87
(0.04)

0.48
(0.03)

0.67
(0.07)

0.43
(0.02)

0.28
(0.07)

0.38
(0.14)

0.03
(0.01)

Table 5: Efficiency across treatments in relation to predictions

Majority Unanimity
40-10 35-15 40-10 35-15

Predictions
Exp. Payoff 0.617 0.5 0.64 0.64
Lying Aversion 0.599 0.5 0.64 0.64
Overreaction 0.92 0.789 1 1
Level-K (1) 0.5 0.5 0.5 0.5
Level-L (1) 0.64 0.5 0.64 0.5

Observations
Aggregate 0.681 0.669 0.777 0.732
Inexperienced 0.690 0.667 0.768 0.748
Experienced 0.672 0.671 0.787 0.718

Note: The table lists predicted and observed relative frequencies of committees choosing “optimally” contingent on their aggregate private information, i.e. choosing the option corresponding
to the majority of private signals.



session), the corresponding rates are 0.681, 0.669, 0.777, and 0.732. Treating each session-half as

an independent observation, realized accuracy falls below the benchmark prediction in only one of

the 32 session-halves (the second half of session 4 in the 35–15 Unanimity treatment). A one-sided

Wilcoxon test rejects the null hypothesis that accuracy does not exceed the benchmark prediction at

p < 10−5. Committees therefore aggregate information more effectively than predicted by Bayesian

equilibrium (with or without the standard behavioral modifications emphasized in this literature).

Result 1. Committees are much more efficient in aggregating information than predicted by Bayesian

equilibrium.

Among the candidate mechanisms discussed above, overreaction and altruism are the two forces

that naturally point toward higher accuracy than Bayesian equilibrium. Moreover, only overreac-

tion naturally predicts a qualitative asymmetry between Majority and Unanimity in how accuracy

responds to public information. Table 5 reports the predictions for the extreme case of “full over-

reaction,” in which agents behave as if their private signals were almost surely correct (and this is

common knowledge). This benchmark overshoots the data, but it points to a useful direction: the

deviations from Bayesian equilibrium are consistent with an intermediate degree of overreaction. We

next examine messages and votes in isolation, before turning to a joint (structural) account.

3.2 Do subjects communicate rationally?

We begin by analyzing communication in relation to the empirically relevant continuation-payoff

incentives associated with messages. Table 6 reports, for each treatment and each signal realization,

(i) the observed relative frequency of sending message R and (ii) the average continuation payoff

observed in the experiment conditional on the sender’s signal and message. That is, the “Exp Payoff”

entries are sample averages over subsequent votes and outcomes as realized in the data, conditioning

only on the sender’s signal and message.

Two descriptive patterns are robust. First, messages are tightly linked to private signals. Follow-

ing an R signal, subjects send R with high probability (between 0.787 and 0.958 across treatments).

Following a B signal, they send R with low probability (between 0.128 and 0.163). Communication

is therefore close to truthful, with slightly higher truthfulness in the Unanimity treatments.

Second, message behavior is only weakly aligned with continuation-payoff incentives. The em-

pirical payoff advantage of messaging R rather than B varies substantially across treatments and even

changes sign, yet the frequency of R messages after a B signal remains tightly clustered around 0.13–

0.16. Likewise, after an R signal the payoff difference between R and B messages is small in the

Majority treatments, but the probability of messaging R remains high and varies non-monotonically

across those treatments. Overall, continuation-payoff differences appear to be a second-order deter-

minant of messages relative to the private signal.

Econometric check. To assess the relationship between messages and continuation-payoff incen-

tives more systematically, we estimate a logit model in which a subject’s message responds to (esti-

mated) continuation payoffs and to her private signal. Formally, let EP(m = R | s) and EP(m = B | s)
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Table 6: Expected payoffs and relative frequencies of messages contingent on signal

(a) Majority decisions

Exp Payoff

Mess R Mess B Rel Freq R

40-10 Signal R 32.86 32.3 0.904
Signal B 25.48 27.94 0.163

35-15 Signal R 33.59 33.34 0.787
Signal B 27.69 26.44 0.128

(b) Unanimity decisions

Exp Payoff

Mess R Mess B Rel Freq R

40-10 Signal R 33.66 28.12 0.958
Signal B 27.19 27.37 0.14

35-15 Signal R 35.76 30.83 0.94
Signal B 29.64 27.67 0.137

Note: Continuation payoffs observed in the experiment, conditional on the private signal being R or B and the subject
sending message R or B (columns “Mess R” and “Mess B”). “Rel Freq R” lists the observed relative frequency of sending
message R conditional on the signal.

denote the expected continuation payoff associated with sending message R or B after signal s. Al-

lowing for logistic errors, and letting subjects place weight λ on continuation payoffs and weight γ

on their signal, we specify

Pr(m = R | s) =
exp{λ ·EP(m = R | s)+ γ · Is=R}

exp{λ ·EP(m = R | s)+ γ · Is=R}+ exp{λ ·EP(m = B | s)+ γ · Is=B}
. (5)

Let dEP(s) = EP(m = B | s)−EP(m = R | s) denote the payoff difference between sending B and R

after signal s ∈ {R,B}. Rearranging (5) yields the regression form

Pr(m = R | s) =
1

1+ exp{λ ·dEP(s)− γ̃ · (Is=R −1/2)}
, (6)

where γ̃ = 2γ absorbs the normalization induced by Is=B = 1− Is=R.

Two implementation details matter. First, dEP(s) is estimated from the data and therefore mea-

sured with error. We estimate standard errors for dEP(s) (for each s and treatment) and use the

MCMC correction proposed by Hadfield (2010). Second, we include random effects at the subject

level to account for the panel structure. We report estimates separately for Majority, for Unanimity,

and pooled across treatments.

Table 7 confirms the descriptive impression. The own-signal coefficient is large and highly sig-

nificant. The continuation-payoff term is statistically insignificant in the Majority treatments and

statistically significant under Unanimity and in the pooled sample, but its magnitude is modest:

even when the payoff differences in Table 6 are largest (roughly 5–6 points), the implied shift in

log-odds from the payoff channel is small relative to the signal effect. We therefore conclude that

messages are close to truthful and only weakly strategic in the sense of being only weakly responsive

to continuation-payoff incentives.

Why overreaction can support truth-telling. In our theoretical menu (Table 14), message-stage

behavior can be rationalized by either lying aversion or belief distortions (overreaction), among other

possibilities. Overreaction is useful here because it makes truth-telling instrumentally attractive:
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Table 7: Messaging regressions: continuation payoffs and private signals

Majority Unanimity Pooled

Estimates
Exp. payoff −0.296

(0.555)
0.301
(0.049)

∗∗∗ 0.291
(0.121)

∗

Own signal 5.561
(0.549)

∗∗∗ 5.394
(0.203)

∗∗∗ 4.871
(0.224)

∗∗∗

Additional information
Number observations 4650 4650 9300
DIC 2835.1 1907.5 5125.1
Measurement error correction
Random effects

Note: Logit regression of the dependent variable 1{m = R} with subject-level random effects, pooling all rounds. “Exp.
payoff” refers to dEP(s) in (6). DIC is the deviance information criterion. One asterisk indicates p < 0.05, two asterisks
indicate p < 0.01, and three asterisks indicate p < 0.001.

when a subject overweights the event that ω = s, she overestimates the expected payoff gain from

sending the message that matches her signal.

To state this connection cleanly, let π̄(m | ω) denote the average continuation payoff associated

with sending message m ∈ {R,B} when the true state is ω ∈ {R,B}. Define the state-contingent

payoff difference between sending B and sending R by

dπ(ω) = π̄(B | ω)− π̄(R | ω). (7)

Given a posterior Pr(ω= · | s) after observing signal s, the subjective expected payoff difference from

sending B rather than R is

dEP(s) = Pr(ω = R | s) ·dπ(R) + Pr(ω = B | s) ·dπ(B). (8)

If Pr(ω = s | s) is biased upward (overreaction), then dEP(s) is biased toward the message that

matches s whenever correct messages are more profitable than incorrect ones.

Table 8 shows exactly this payoff structure: conditional on the true state, sending the correct

message is much more profitable than sending the wrong message in all treatments. Hence, a distorted

belief that places excessive posterior weight on ω = s creates a strong perceived incentive to message

truthfully.

Estimating the degree of overreaction from messages alone. To quantify how strong a belief

distortion would need to be to rationalize message behavior, we parameterize beliefs about the true

state after observing the private signal by

Pr(ω = R | s) =
1

1+ exp{αm · (Is=B −1/2)}
= 1−Pr(ω = B | s), (9)
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Table 8: Expected payoffs of messages contingent on the unknown state of the world

(a) Majority decisions

Mess R Mess B

40-10 State R 46.01 33.51
State B 14.89 24.75

35-15 State R 46.72 37.06
State B 15.94 20.88

(b) Unanimity decisions

Mess R Mess B

40-10 State R 46.04 27.54
State B 15.38 27.32

35-15 State R 46.70 32.24
State B 17.54 24.62

Note: Conditional continuation payoffs for sending message R or B, conditional on the true state.

and estimate (λ,αm) by maximum likelihood using (6)–(9). Under correct Bayesian updating with

prior 1/2 and signal accuracy 0.6, the implied value is αm ≈ 0.81, yielding posterior 0.6 after R and

0.4 after B. Overreaction corresponds to αm > 0.81.

Table 9 reports the resulting comparison between observed messaging frequencies and model-

implied predictions without and with overreaction, as well as the implied beliefs Pr(ω = R | s). The

estimated αm is around 5, far above the Bayesian benchmark. Interpreted literally, message behavior

is consistent with subjects acting as if the state matches their private signal with probability above 0.9.

This degree of perceived precision generates message predictions close to the observed frequencies.

Table 9: Predicted messages with and without overreaction

Empirical Beliefs under expected payoffs Beliefs with overreaction
P̂r(m = R|s) λ Pr(ω = R|s) Pr(m = R|s) (λ,αm) Pr(ω = R|s) Pr(m = R|s)

Majority (40-10 and 35-15 pooled)
s = R 0.847 0.41 0.6 0.821 (0.20,4.94) 0.92 0.877
s = B 0.146 0.4 0.495 0.08 0.233

Unanimity (40-10 and 35-15 pooled)
s = R 0.949 0.33 0.6 0.879 (0.21,5.57) 0.94 0.956
s = B 0.138 0.4 0.574 0.06 0.169

At the same time, message data alone do not sharply distinguish overreaction from lying aver-

sion: both can rationalize near-truthful communication. The key difference is that overreaction also

restricts behavior in the voting stage, whereas a pure honesty preference does not. We therefore turn

next to voting behavior conditional on realized message profiles.

Result 2. Messages are close to truthful and only weakly responsive to continuation-payoff incen-

tives. Lying aversion and overreaction are both compatible with the observed messages in isolation.

3.3 Do subjects vote rationally?

We now turn to the voting stage. Figure 1 summarizes voting behavior across information sets, con-

ditioning on the subject’s private signal si ∈ {R,B} and on the number of opponents’ messages equal

to B, denoted O ∈ {0,1,2}. In both Majority and Unanimity treatments, voting responds strongly,

and in the intuitive direction, to public information: subjects vote R with very high probability when
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both opponents message R, with very low probability when both opponents message B, and at inter-

mediate rates otherwise. Across information sets, the relative frequency of voting R ranges roughly

from 0.1 to 0.95.

Figure 1: Relative frequency of voting R as functions of own signal and the number O of B-messages
sent by opponents

(a) Majority treatments
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(b) Unanimity treatments
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The central question is whether this responsiveness is consistent with payoff maximization under

rational expectations, given the expressive incentive to vote R. The answer hinges on two objects:

(i) beliefs about the state conditional on the available information and (ii) pivotality, i.e. how often a

vote changes the committee outcome. In particular, conditional on messages being highly informative

(Section 3.2), the expressive incentive predicts substantial strategic R voting whenever pivotality is

low. Conversely, if subjects overweight the informational content of signals and messages, they will

be willing to forgo the expressive payoff more often and vote with message majorities even in low-

pivotality situations.

An expected-payoff benchmark under rational expectations

To make the comparison operational without imposing equilibrium restrictions, we construct an em-

pirical rational-expectations benchmark for each voting information set I (given by the subject’s

private signal and the observed message profile). The construction proceeds in two steps.

Step 1: beliefs about the state given information. Let p(I) = Pr(ω = R | I) and q(I) = 1− p(I) =

Pr(ω = B | I). We estimate p(I) from realized states in the data using a flexible logit specification

in the information available at the voting stage. Writing O = ∑ j ̸=i 1{m j = B} for the number of

opponents’ B-messages, we use

p(I) =
1

1+ exp{α0 +α1 · (1{si = B}−1/2)+α2 · (O−1)}
. (10)

This provides a compact reduced-form summary of how private signals and opponents’ message
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realizations predict the true state under empirically observed communication.

Step 2: outcome sensitivity to an individual’s vote. Let X ∈ {R,B} denote the committee outcome

and let M = ∑
3
j=1 1{m j = B} denote the total number of B messages in the committee. We estimate

the probability that the committee outcome is R conditional on the subject’s vote v and the message

profile (summarized by M):

Pr(X = R | v, M) =
1

1+ exp{β1 ·1{v = B}+∑
3
k=0 β2|k ·1{M = k}}

. (11)

Allowing the intercept to vary flexibly with M captures the empirically relevant dependence of out-

comes on message profiles and accommodates noise in the voting stage induced by opponents’

stochastic voting.

Given (10)–(11), the probability that the committee decision is correct conditional on voting v is

Pr(X = ω | v, I) = p(I)Pr(X = R | v,M)+q(I)Pr(X = B | v,M), (12)

with Pr(X = B | v,M) = 1−Pr(X = R | v,M). Using the payoff parameters (C,K) from Section 2.1,

expected payoffs are

EP(v = R | I) =C Pr(X = ω | v = R, I)+K, EP(v = B | I) =C Pr(X = ω | v = B, I),

under Majority. Under Unanimity with default-R enforcement, the expressive payoff is received

if and only if the enforced final vote is R, which coincides with X = R under our reduced-form

implementation. Hence we use

EP(v | I) =C Pr(X = ω | v, I)+K Pr(X = R | v,M). (13)

Table 10 juxtaposes, for each voting information set, the expected-payoff benchmark under ra-

tional expectations with the corresponding vote frequencies in the data. Two features are robust.

First, under Majority, the expected-payoff benchmark typically favors R. A key reason is that

the expressive payoff K is attached to the individual vote under Majority: if a subject votes R she

receives K regardless of whether her vote is pivotal. When pivotality is low, the sure expressive

payoff dominates the expected common-value gain from trying to shift the outcome from R to B, so

EP(R)> EP(B) in most information sets.

Second, subjects nevertheless vote B precisely when the information favors B. Even when

EP(R)> EP(B) under the rational-expectations benchmark, B votes are frequent in the information

sets in which the message profile (and often also the subject’s signal) indicates that ω = B is likely.

Under Unanimity, incentives to vote B differ because the expressive payoff is tied to the enforced

final vote (equivalently, to the default-R outcome) rather than to the raw individual vote. Neverthe-

less, the same qualitative pattern remains: subjects sometimes vote B in information sets where the

expected-payoff benchmark favors R. In short, votes track signals and messages in the right direction,

but they do so more aggressively than payoff maximization under rational expectations would justify.
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Table 10: Expected payoffs and decisions when voting

Majority 40-10
EP(R) EP(B) P̂r(R)

S-R M-R , OBlue 0 38.17
(0.57)

26.4
(0.49)

0.98
(0.007)

S-R M-R , OBlue 1 33.67
(0.38)

22.64
(0.29)

0.93
(0.011)

S-R M-R , OBlue 2 29.61
(0.22)

20.89
(0.49)

0.64
(0.031)

S-R M-B , OBlue 0 38.17
(0.57)

26.4
(0.49)

0.86
(0.056)

S-R M-B , OBlue 1 32.35
(0.27)

18.29
(0.21)

0.68
(0.058)

S-R M-B , OBlue 2 29.61
(0.22)

20.89
(0.49)

0.55
(0.111)

S-B M-R , OBlue 0 31.21
(0.67)

20.95
(0.52)

0.77
(0.057)

S-B M-R , OBlue 1 26.33
(0.38)

17.36
(0.29)

0.82
(0.037)

S-B M-R , OBlue 2 27.4
(0.35)

25.96
(0.45)

0.51
(0.073)

S-B M-B , OBlue 0 31.21
(0.67)

20.95
(0.52)

0.92
(0.015)

S-B M-B , OBlue 1 27.65
(0.27)

21.71
(0.21)

0.44
(0.021)

S-B M-B , OBlue 2 27.4
(0.35)

25.96
(0.45)

0.31
(0.03)

Majority 35-15
EP(R) EP(B) P̂r(R)

39.44
(0.54)

23.38
(0.48)

0.98
(0.008)

35.65
(0.34)

19.89
(0.27)

0.95
(0.009)

31.96
(0.38)

17.94
(0.3)

0.75
(0.028)

39.44
(0.54)

23.38
(0.48)

0.91
(0.04)

35.18
(0.29)

17.47
(0.12)

0.94
(0.023)

31.96
(0.38)

17.94
(0.3)

0.84
(0.039)

33.41
(0.63)

18.27
(0.53)

0.92
(0.057)

29.35
(0.34)

15.11
(0.27)

0.78
(0.05)

28.35
(0.39)

20.83
(0.33)

0.69
(0.06)

33.41
(0.63)

18.27
(0.53)

0.92
(0.019)

29.82
(0.29)

17.53
(0.12)

0.6
(0.021)

28.35
(0.39)

20.83
(0.33)

0.31
(0.026)

Unanimity 40-10
EP(R) EP(B) P̂r(R)

39.17
(0.55)

37.21
(0.49)

0.98
(0.007)

33.73
(0.4)

31.82
(0.33)

0.95
(0.009)

25.71
(0.21)

23
(0.56)

0.3
(0.033)

39.17
(0.55)

37.21
(0.49)

0.71
(0.113)

29.72
(0.27)

20.52
(0.29)

0.53
(0.109)

25.71
(0.21)

23
(0.56)

0.25
(0.125)

32.03
(0.77)

31.06
(0.67)

0.74
(0.062)

25.99
(0.4)

25.78
(0.31)

0.87
(0.039)

23.89
(0.16)

28.11
(0.41)

0.31
(0.079)

32.03
(0.77)

31.06
(0.67)

0.87
(0.02)

25.54
(0.21)

24.49
(0.2)

0.2
(0.017)

23.89
(0.16)

28.11
(0.41)

0.03
(0.01)

Unanimity 35-15
EP(R) EP(B) P̂r(R)

40.74
(0.5)

39.56
(0.48)

0.99
(0.004)

35.6
(0.36)

33.45
(0.32)

0.96
(0.009)

27.32
(0.28)

22.29
(0.33)

0.48
(0.031)

40.74
(0.5)

39.56
(0.48)

0.47
(0.118)

32.75
(0.3)

23.47
(0.28)

0.62
(0.061)

27.32
(0.28)

22.29
(0.33)

0.54
(0.144)

34.54
(0.6)

33.83
(0.57)

0.92
(0.032)

28.91
(0.36)

28.11
(0.3)

0.81
(0.049)

24.6
(0.22)

25.47
(0.25)

0.31
(0.071)

34.54
(0.6)

33.83
(0.57)

0.84
(0.022)

27.86
(0.27)

24.44
(0.11)

0.38
(0.019)

24.6
(0.22)

25.47
(0.25)

0.05
(0.013)

Note: For each voting information set, the table reports the expected payoff from voting R, EP(R), the expected payoff
from voting B, EP(B), and the observed relative frequency of R votes, P̂r(R). Expected payoffs are computed from the
empirical belief and outcome objects estimated in (10)–(13).

Result 3. Voting is highly responsive to signals and message profiles, but it is not well-explained

by payoff maximization under rational expectations: subjects vote for B too often relative to the

expected-payoff benchmark, especially when public information favors B.

A simple diagnostic: what beliefs are required to justify B-voting?

The comparison above is informative but does not by itself isolate what departs from rational voting:

subjects may misperceive pivotality, misperceive the informativeness of signals/messages, or both.

Voting against the expressive option R is costly unless the subject both (i) assigns sufficiently high

probability to ω = B and (ii) expects her vote to matter for the outcome.

A convenient way to summarize outcome sensitivity from (11) is the effect of switching one’s

vote on the probability of outcome R:

π(I) ≡ Pr(X = R | v = R,M)−Pr(X = R | v = B,M). (14)

Under Majority, π(I) is small whenever the other votes typically determine the outcome regardless of

i’s vote. Under Unanimity with default-R enforcement, Pr(X = R | v = R,M) is mechanically close

to one, so π(I) is essentially the probability that voting R prevents a unanimous B outcome.

Using (12), one can write the payoff gain from voting B rather than R under Majority as

EP(B)−EP(R) = π(I) ·C ·
(
2q(I)−1

)
− K. (15)
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Therefore voting B can be optimal under Majority only if the posterior q(I) satisfies the threshold

q(I) ≥ qmin(I) ≡ 1
2

(
1+

K
π(I)C

)
, (16)

with the convention that if π(I) = 0 then voting B is never optimal. The key implication is immediate:

when pivotality is low, qmin(I) becomes extremely close to one (and may exceed one), so observing

substantial B voting in such information sets requires very extreme beliefs that ω = B.

Under Unanimity with enforcement, the expressive term in (13) is also scaled by the probability

that the vote affects the outcome, so both the common-value gain and the expressive cost are propor-

tional to π(I). As a result, the corresponding posterior threshold is much less sensitive to pivotality

(indeed, under the mechanical benchmark it reduces to a constant cutoff in q(I)). This difference is

one reason why Unanimity can generate more B voting than Majority even when outcome sensitivity

is low.

These implied-belief considerations foreshadow the structural analysis in Section 4. The message

data indicate that subjects treat messages as informative; the voting data indicate that, given the

expressive incentive, subjects behave as if the evidence about ω were more decisive (or outcome

sensitivity higher) than the rational-expectations benchmark suggests. The structural section puts

this joint discipline into a single likelihood framework and asks which deviations from the Bayesian

benchmark are needed once messages and votes are fitted together.

4 Why do subjects deviate from rational behavior?

The empirical patterns documented above pose a joint challenge. Committee decisions are “too accu-

rate” relative to Bayesian equilibrium with expressive payoffs, and this excess accuracy is generated

in both stages: (i) subjects communicate more truthfully than is justified by expected-payoff incen-

tives, and (ii) they vote more “sincerely” (i.e. more in line with signals and message profiles) than

would maximize their own expected payoffs given the same information and the expressive incentive

to vote R.

These two facts already narrow the menu of explanations. Lying aversion can rationalize truth-

telling in the message stage, but it leaves the voting-stage pivotality/free-riding logic intact and there-

fore cannot, by itself, generate the observed responsiveness of votes to message profiles. Conversely,

a shallow-reasoning account can inflate perceived pivotality and thereby push votes toward sincer-

ity, but it would typically predict weaker use of others’ messages, contradicting the strong empirical

sensitivity of votes to public information. A belief distortion of the kind formalized in Section 2.2

(“overreaction”) naturally moves both stages in the right direction: if agents overweight directional

evidence about the state, then sending an accurate message becomes more valuable and voting with

the informational majority becomes more attractive.

Accordingly, we treat the structural exercise as disciplined measurement. We embed a parsi-

monious belief distortion into an otherwise standard logit-response model of messaging and voting,
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estimate it jointly, and use likelihood-ratio restrictions to assess which departures from the Bayesian

benchmark are required by the data. The main estimates and restriction tests are summarized in

Tables 11 and 12.

4.1 A structural model of messaging and voting

We merge the belief objects used above for (i) beliefs about the true state and (ii) beliefs about the

mapping from votes to outcomes, and model choices in both stages via logit response. The unifying

idea is that the same distortion that makes agents too responsive to evidence about the state can affect

incentives in both stages.

Voting. Fix a voting information set I, consisting of the subject’s private signal and the observed

message profile. Let Pr(ω = R | I) denote the subject’s belief about the state and let Pr(X = R | v, I)

denote the subject’s belief about the committee outcome conditional on her own vote v ∈ {R,B}.

Given these objects, define the perceived probability of a correct outcome under vote v by

Pr(X = ω | v, I) = Pr(ω = R | I)Pr(X = R | v, I)+Pr(ω = B | I)Pr(X = B | v, I),

with Pr(X = B | v, I) = 1−Pr(X = R | v, I). Under Majority, the expressive payoff is tied to the raw

individual vote, so perceived expected payoffs are

EP(v = R | I) =C Pr(X = ω | v = R, I)+K, EP(v = B | I) =C Pr(X = ω | v = B, I).

Under Unanimity with default-R enforcement, the expressive payoff is received if and only if the

enforced final vote is R, which coincides with X =R under our reduced-form implementation. Hence,

EP(v | I) =C Pr(X = ω | v, I)+K Pr(X = R | v, I).

To keep the structural interpretation transparent, we allow the data to scale the common-value

and expressive components differently in the voting stage. Let

∆C(I) ≡ C
[
Pr(X = ω | v = R, I)−Pr(X = ω | v = B, I)

]
,

and let

∆K(I) ≡

K, under Majority,

K
[
Pr(X = R | v = R, I)−Pr(X = R | v = B, I)

]
, under Unanimity with default-R enforcement.

We then specify the probability of voting R at I as

Pr(v = R | I) =
1

1+ exp
{
−λv ·

(
∆C(I)+φv ∆K(I)

)} , (17)

where λv > 0 is a payoff-sensitivity parameter and φv governs the relative weight placed on the
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expressive component. The restriction φv = 1 corresponds to correctly weighting the expressive

payoff as specified in (2); φv = 0 corresponds to purely accuracy-motivated voting, holding beliefs

fixed.

Beliefs about the state. Write O = ∑ j ̸=i 1{m j = B} ∈ {0,1,2} for the number of opponents’ B-

messages. We parameterize state beliefs by a logit index in the two sufficient statistics observed at

the voting stage, si and O:

Pr(ω = R | I) =
1

1+ exp{δ0 +δs · (1{si = B}−1/2)+δm · (O−1)}
. (18)

This specification is deliberately agnostic about equilibrium restrictions; it provides a low-dimensional

summary of how the subject treats private and public evidence about the state. The belief-distortion

restriction below imposes structure on (δs,δm).

Beliefs about the outcome. Let M = ∑
3
j=1 1{m j = B} ∈ {0,1,2,3} denote the total number of

B messages in the committee (including the subject). We parameterize beliefs about the outcome

mapping by allowing the baseline propensity for outcome R to vary flexibly with M, and allowing the

subject’s own vote to shift this propensity:

Pr(X = R | v, I) =
1

1+ exp{β1 ·1{v = B}+∑
3
k=0 β2|k ·1{M = k}}

. (19)

This reduced-form object captures the empirically relevant mapping from individual votes to out-

comes given the message profile, allowing for stochastic voting by opponents.

Messaging. Let dEP(s) denote the perceived expected payoff difference between sending m = B

and m = R after observing signal s, computed as in (7)–(8) using the subject’s state belief after the

signal. We model message choice via

Pr(m = R | s) =
1

1+ exp
{

λm ·dEP(s)−η ·
(
1{s = R}−1{s = B}

)} , (20)

where λm captures responsiveness to instrumental continuation-payoff incentives and η captures a

direct truth-telling motive (our “lying-aversion” channel).

Interpreting overreaction as perceived precision. The belief distortion studied in Section 2.2

scales posterior log-odds, equivalently raising likelihood ratios to a common power. In the present

parametrization, this corresponds to a simple restriction on the relative weights placed on private

and public evidence in (18). Let (δ̂s, δ̂m) denote the Bayesian benchmark weights implied by Bayes’

rule given the objective signal structure and the empirically relevant (symmetric) communication
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technology.7 We impose

(δs,δm) = κ · (δ̂s, δ̂m), (21)

where κ = 1 corresponds to Bayesian beliefs, κ > 1 corresponds to “overreaction” (inflated perceived

precision), and κ ∈ (0,1) corresponds to underreaction. Importantly, (21) does not impose that sub-

jects ignore others’ information; it imposes that they scale all directional evidence by the same factor,

consistent with the log-odds scaling property shown in Appendix A.4.

4.2 Estimation, pooling, and experience splits

All parameters are estimated by maximum likelihood. Standard errors are Huber–Sandwich esti-

mates clustered at the subject level. Hypothesis tests for economically interpretable restrictions are

likelihood-ratio tests, with critical values obtained from a subject-level block bootstrap to account for

within-subject dependence across rounds. Table 11 reports both parameter estimates and restriction

tests.

We begin by estimating each treatment in isolation and testing whether the two payoff calibrations

can be pooled within each voting rule. The data do not reject pooling within Majority and within

Unanimity (all p> 0.8), so we pool within rule while controlling for the payoff parameter K. Because

each pooled rule cell contains 93 subjects and 50 games per subject, splitting the sample into the

first and second halves yields 93×25 = 2325 subject–round observations per rule and half-session.

Across Majority/Unanimity and first/second halves, this produces 4× 2325 = 9300 observations in

the four reported subsamples.

We then test for experience effects. While within-treatment learning is only modestly detectable,

pooling within rule reveals statistically significant differences between the first and second halves of

sessions (Majority: p = 0.027; Unanimity: p = 0.035). We therefore report estimates separately for

periods 1–25 and 26–50 throughout.

4.3 Analysis

The restriction tests mirror the reduced-form narrative. We proceed in three steps: we first test

whether choices can be rationalized by reweighting payoff components, then we test whether beliefs

about the state satisfy the proportional “precision distortion” in (21), and finally we study whether

beliefs about the mapping from messages and votes to outcomes display a pivotality-misperception

pattern.

Payoff weights. Row (A) of Table 11 tests whether subjects disproportionately weight the expres-

sive component relative to the common-value component in the voting stage (i.e. φv ̸= 1 in (17))

and whether payoff sensitivity differs across voting and messaging (i.e. λv ̸= λm). The restriction

is not rejected in any subsample (all p > 0.2). Thus, the data do not call for “efficiency concerns”

7Concretely, δ̂s equals the log-likelihood ratio induced by one private signal, and δ̂m equals the log-likelihood ratio induced
by one opponent message, computed from the conditional distribution of messages given the state.
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Table 11: Structural estimation: motives underlying communication and voting

Majority decision Unanimous decision
First half Second half First half Second half

Null Hypothesis Alternative Rational Behav Rational Behav Rational Behav Rational Behav
αm 0.771

(0.086)
22.601
(181.016)

0.746
(0.086)

3.388
(4.223)

0.738
(0.086)

25.379
(384.213)

0.875
(0.088)

4.919
(3.146)

α1 0.574
(0.074)

12.248
(90.552)

0.556
(0.074)

−0.515
(1.266)

0.449
(0.081)

14.511
(192.381)

0.893
(0.08)

4.201
(2.169)

α2 0.377
(0.074)

12.021
(90.352)

0.469
(0.075)

4.151
(3.853)

0.574
(0.067)

13.559
(192.428)

0.644
(0.074)

3.68
(1.735)

β1 2.407
(0.094)

4.746
(0.475)

2.397
(0.101)

3.092
(0.373)

2.236
(0.103)

5.105
(2.018)

2.169
(0.1)

6.573
(3.542)

β2|0 −3.466
(0.189)

−1.837
(0.688)

−4.361
(0.297)

0.083
(0.09)

−3.98
(0.183)

2.731
(1.282)

−4.323
(0.265)

4.701
(1.987)

β2|1 −2.678
(0.091)

−3.406
(0.427)

−3.434
(0.115)

0.299
(0.399)

−3.23
(0.112)

3.471
(1.295)

−3.352
(0.116)

5.137
(1.996)

β2|2 −0.387
(0.059)

−2.795
(0.158)

−0.791
(0.062)

−3.818
(1.173)

−0.247
(0.062)

−3.709
(1.458)

−0.513
(0.059)

5.02
(2.146)

β2|3 0.861
(0.096)

−1.8
(0.338)

0.394
(0.094)

1.425
(1.216)

0.768
(0.112)

−0.243
(16.197)

1.104
(0.104)

0.216
(41.164)

λ1 0.969
(0.063)

1.218
(0.275)

1.542
(0.257)

3.63
(0.768)

λ2 1.105
(0.164)

0.38
(0.183)

2.007
(0.27)

6.341
(1.47)

λ3 0.029
(1.034)

0
(1.055)

1.501
(0.403)

1.778
(0.847)

λ4 1.668
(1.055)

1.774
(0.769)

0.244
(0.505)

0.663
(0.915)

No of observations 2325 2325 2325 2325
Log-likelihood -2081.1 -1905.06 -1632.48 -1516.48

Efficiency concerns
(A) HA : λ1 = λ2 = λ3 HBase 3.05

(0.605)
9.35
(0.28)

0.83
(0.795)

6.84
(0.244)

State beliefs: overshooting
(B) HB : HA ∧αm,1,2 = α̂m,1,2 HA 37.62∗∗∗

(0.006)
39.79∗∗
(0.033)

98.44∗∗∗
(0.001)

50.29∗∗
(0.042)

(C) HC : HA ∧αm,1,2 ∝ α̂m,1,2 HA 4.46
(0.258)

26.26
(0.143)

8.39∗
(0.07)

6.25
(0.44)

Voting beliefs: rational expectations with pivotality illusion
(D) HD : HC ∧β1 = β̂1 HC 0

(1)
0
(1)

4.03
(0.442)

11.7
(0.106)

(E) HE : HD ∧β2|0...3 = β̂2|0...3 HD 32.69∗∗∗
(0)

30.44∗∗∗
(0)

340.34∗∗∗
(0)

301.08∗∗∗
(0)

(F) HF : HD ∧β2|0...3 ∝ β̂2|0...3 HD 15.09∗∗
(0.019)

9.35∗
(0.088)

31.66∗∗
(0.036)

8.94
(0.3)

(G) HG : HD ∧β2|0...3 = 0 HD 16.46∗∗
(0.032)

10.78∗
(0.092)

31.66∗∗
(0.036)

10
(0.27)

Lying aversion develops with experience
(H) HH : HD ∧λ4 = 0 HD 19.91

(0.109)
37.94∗
(0.058)

0.1
(0.916)

17.55
(0.194)

Note: The rows αm–λ4 report maximum-likelihood estimates; standard errors in parentheses are Huber–White estimates clustered at the subject level. The columns labelled “Rational” report the benchmark
coefficients implied by rational expectations and Bayesian updating (using α̂ and β̂ as defined in the text), while the columns labelled “Behav” report the corresponding estimates in the flexible specification.
Rows (A)–(H) report likelihood-ratio (LR) tests of nested restrictions. The reported statistic is the LR statistic 2(ℓunrestricted − ℓrestricted); p-values (in parentheses) are obtained by a subject-level bootstrap of the
LR statistic to account for within-subject dependence across rounds. Asterisks denote significance levels (* p < 0.10, ** p < 0.05, *** p < 0.01). The notation αm,1,2 denotes the vector (αm,α1,α2) and ∝

denotes proportionality of vectors.



(e.g. φv < 1) or for disproportionate salience of K (e.g. φv > 1) as the primary driver. The structural

explanation therefore points to beliefs rather than to payoff weights.

State beliefs: Bayesian weights versus perceived precision. Row (B) tests Bayesian state beliefs

by imposing (δs,δm) = (δ̂s, δ̂m) in (18). This restriction is rejected across subsamples (reported p-

values range from 0.001 to 0.042). Substantively, the estimated evidence weights are much larger in

magnitude than their Bayesian counterparts, consistent with agents behaving as if both private signals

and messages are substantially more precise than under the objective information structure.

Relative weighting of own signal and opponents’ messages. A cursedness-/level-k-style devi-

ation would predict that opponents’ messages are treated as less informative than they objectively

are, i.e. the relative weight on one’s own signal should rise compared to the Bayesian benchmark.

Row (C) addresses this by testing the proportionality restriction in (21), which preserves the ratio

of message- to signal-weight while allowing a common amplification factor κ. The proportionality

restriction is not rejected in most subsamples; where it is weakly rejected, the direction does not

support systematic message discounting. The data therefore do not look “cursed” in the sense of

selectively underweighting others’ information. Rather, they are consistent with an approximately

common scaling of all directional evidence, i.e. an intermediate κ > 1.

The remaining rows turn from beliefs about the state to beliefs about the committee outcome induced

by voting.

Perceived impact of one’s own vote. Row (D) tests whether subjects correctly perceive the sign

and magnitude of the effect of their own vote on the probability of outcome R by imposing β1 = β̂1

in (19). The restriction is not rejected. This is useful because it rules out a simple misunderstanding

of the voting rule as the main explanation for “sincere” voting.

Rational expectations about how messages translate into outcomes. Row (E) tests rational ex-

pectations about the outcome mapping conditional on message profiles by imposing β2|· = β̂2|·. This

restriction is strongly rejected. Thus, even if subjects are roughly correct about how their own vote

shifts the outcome, they mispredict how others’ votes respond to messages and, therefore, how mes-

sage profiles translate into final outcomes.

Structure of the outcome-belief deviation: a pivotality illusion. Rows (F) and (G) probe the

structure of this misprediction. With experience, subjects’ outcome-belief weights are difficult to

distinguish from either (i) a proportional attenuation of the rational-expectations weights, β2|· = ρβ̂2|·

with ρ ∈ [0,1], or (ii) the extreme simplification β2|· = 0, in which message profiles are treated as

largely uninformative about others’ votes and hence about outcomes. Both patterns point in the

same qualitative direction: subjects behave as if others’ votes are noisier and less predictable from

messages than they truly are, which inflates perceived pivotality and thereby encourages voting in line
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with informational considerations. Importantly, this is not a level-k story about the message stage

(which would also dismiss message informativeness); it is better described as a pivotality illusion

localized to the mapping from messages to outcomes.

Is lying aversion required once belief distortions are allowed? Row (H) tests whether a direct

truth-telling motive is needed in the messaging stage by setting η = 0 in (20) once state-belief distor-

tions are admitted. The restriction is not robustly rejected. Any weak detection in isolated subsamples

is not stable across specifications and does not affect the substantive conclusion: the joint pattern of

(near-truthful) messages and (strongly responsive) votes is primarily accounted for by belief distor-

tions and outcome-belief misprediction, not by a direct utility cost of lying.

Result 4. The structural restrictions align with the reduced-form evidence. Subjects behave as if they

(i) overreact when forming beliefs about the state, in the sense of an amplified perceived precision κ>

1 applied broadly to both signals and messages, and (ii) under-infer how predictably message profiles

translate into the committee outcome (a pivotality-illusion channel), especially with experience. Once

(i) is admitted, lying aversion is not a robust additional driver.

4.4 Quantitative fit

Table 12: Adequacy of simple models in describing behavior (Majority and Unanimity pooled)

1st halves of sessions 2nd halves of sessions
LL R2 γ1 γ2 γ3 LL R2 γ1 γ2 γ3

QRE -5546.63 0.35 1 0 1 -5045.16 0.47 1 0 1
+ overreaction -4123.14 0.87 6.15 0 1 -3860.76 0.87 3.97 0 1
+ lying aversion -4573.18 0.71 1 1.36 1 -4175.56 0.77 1 0.90 1
+ pivotality illusion -5102.90 0.49 1 0 0 -4715.25 0.57 1 0 0.19

Note: The table compares nested parsimonious specifications fit to the joint distribution of messages and votes, pooling
Majority and Unanimity within each experience half. γ1 denotes the perceived-precision distortion κ (equivalently the
common ratio of estimated to Bayesian evidence weights, e.g. δs/δ̂s = δm/δ̂m under (21)). γ2 indexes the strength of
a direct truth-telling motive in messaging (a normalized version of η in (20)). γ3 indexes attenuation of outcome-belief
responsiveness to message profiles (a normalized version of ρ in β2|· = ρβ̂2|·), with smaller values corresponding to a
stronger pivotality-illusion channel.

Table 12 compares four nested parsimonious specifications (baseline logit-QRE; plus overreac-

tion; plus lying aversion; plus pivotality illusion) separately for the first and second halves of ses-

sions. Two patterns are immediate. First, allowing the single perceived-precision distortion produces

by far the largest improvement in fit in both halves. Second, the ranking is stable across experience:

overreaction dominates, lying aversion improves fit less, and the pivotality-illusion channel by itself

captures comparatively little of the joint variation.

These likelihood comparisons translate directly into standard information criteria. Let LL denote

the maximized log-likelihood, k the number of free parameters, and n the number of observations.

Then AIC = 2k − 2LL and BIC = k ln(n)− 2LL. In each half, pooling Majority and Unanimity

yields n = 4650 observations; pooling across both halves yields n = 9300. Since the overreaction
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specification improves LL by more than a thousand relative to baseline in each half (Table 12), no

plausible AIC/BIC penalty for adding a single parameter can overturn the ranking.8

Result 5. Measured by likelihood (and therefore also by AIC/BIC), the dominant parsimonious im-

provement over baseline logit-QRE is the one-parameter perceived-precision (overreaction) channel.

This conclusion is stable across early and late rounds.

Finally, this section does not claim that every deviation is captured by a single distortion. Rather,

the disciplined takeaway is that a single perceived-precision distortion accounts for the main joint

anomaly across stages, while remaining deviations are naturally summarized by a localized pivotality-

illusion component in beliefs about how message profiles translate into outcomes.

5 Discussion

This paper documents a robust deviation from Bayesian equilibrium in a standard committee game

with cheap-talk communication and expressive voting incentives. Committees aggregate private in-

formation substantially more accurately than Bayesian equilibrium predicts under either Majority or

Unanimity. The data show two stage-by-stage regularities. First, messages are close to truthful (Sec-

tion 3.2). Second, conditional on message profiles, votes respond strongly, and often more strongly

than payoff maximization under rational expectations would imply, to both private and public in-

formation (Section 3.3). The key empirical discipline comes from the voting stage: the observed

responsiveness of votes implies posteriors that are systematically more extreme than the Bayesian

benchmark, in the direction of overweighting new information.

To organize these patterns parsimoniously, we estimate a structural model that layers a one-

parameter distortion of Bayesian updating onto a standard logit-response framework for messaging

and voting (Section 4). The distortion can be read as an index of responsiveness to directional ev-

idence, or equivalently as an “as-if” perceived precision of signals and messages. Allowing this

single belief-distortion parameter materially improves fit relative to a Bayesian benchmark and, cru-

cially, rationalizes behavior in both stages jointly. Additional components, a localized misprediction

of how message profiles map into outcomes (a pivotality-illusion channel) and, at most, weak di-

rect truth-telling motives, matter at the margin, but the central empirical regularity is that a common

amplification of evidence about the state provides the main unifying account of (i) near-truthful com-

munication and (ii) overly responsive voting.

What the design can and cannot establish. Our contribution is measurement and organization,

not a clean causal separation among all candidate models of non-Bayesian belief formation. The

design was not constructed to toggle individual belief mechanisms in isolation. Accordingly, the

structural exercise should be read as a disciplined accounting within a canonical committee envi-

ronment: it identifies the direction and magnitude of systematic departures from Bayesian updating

8The penalty difference between two specifications that differ by one parameter is 2 under AIC and ln(n) under BIC. Here
ln(4650)≈ 8.44 for a half-sample and ln(9300)≈ 9.14 when pooling across halves.
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that are needed to satisfy the joint restrictions imposed by messages and votes. Other psychological

mechanisms may generate similar reduced-form distortions, and a different design would be required

to adjudicate among them.

Alternative mechanisms. Two prominent alternatives are honesty motives and limited strategic

reasoning. Honesty motives can rationalize truthful messaging, but by themselves they do not ex-

plain why votes behave as if posteriors are systematically more extreme than Bayes conditional on

informative message profiles. Limited-depth reasoning can, in principle, distort perceived pivotality

and push votes toward information use, but standard versions also predict weaker reliance on others’

messages, which conflicts with the strong empirical sensitivity of votes to message profiles. Risk

aversion is also unlikely to explain our findings: it reduces the effective weight on the risky common-

value component relative to the sure expressive payoff, which directionally strengthens incentives to

vote R and thereby works against information aggregation. Social preferences could increase truth-

telling if subjects dislike harming others through deception, but they do not naturally generate the

second-stage implication that voting reflects systematically inflated posteriors. These considerations

motivate our focus on belief distortions as the most economical stage-consistent account.

Toward cleaner tests. A sharper causal test of belief distortions versus competing mechanisms

would vary the informational environment in ways that shift Bayesian posteriors while holding strate-

gic incentives fixed. Natural design elements include individual (N = 1) decision problems to isolate

updating, exogenously biased priors that are displayed prominently to test base-rate neglect ver-

sus overreaction, and sender–receiver variants with exogenous message accuracy (or experimentally

controlled truthfulness) to break equilibrium feedback from voting incentives to communication in-

centives. Such designs would complement the present results by turning the reduced-form “respon-

siveness” parameter into a cleaner discriminator among specific non-Bayesian mechanisms.

Portability. The belief-distortion interpretation is not specific to expressive payoffs. A recurring

finding in experimental work on committee communication is “overcommunication” and heavy re-

liance on messages relative to equilibrium predictions. A parsimonious distortion of Bayesian updat-

ing provides a natural organizing language for these findings because it maps directly into exagger-

ated posteriors from private signals and, conditional on informative messages, exaggerated posteriors

from message profiles. This perspective may be useful for future work on committee design, where

comparative statics in decision rules and communication protocols depend critically on how commit-

tee members form beliefs from private and public information.

6 Conclusion

We study information aggregation in three-person committees with private signals, a cheap-talk com-

munication stage, and voting under Majority or Unanimity rules, in an environment where expressive

incentives create scope for both strategic communication and strategic voting. The experiment reveals
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a robust discrepancy between Bayesian equilibrium predictions and observed behavior: committees

are significantly more accurate than predicted, messages are close to truthful, and votes respond to

signals and message profiles more strongly than payoff maximization under rational expectations

would imply.

The paper’s contribution is to document this “too accurate” committee behavior in a canonical

laboratory environment with transparent incentives and rich observables, and to provide a parsimo-

nious structural account that organizes behavior across both stages. A one-parameter perceived-

precision distortion layered onto a logit-response model captures most of the systematic joint varia-

tion in messages and votes and implies posteriors that are systematically more extreme than Bayes in

the direction of overweighting new information. Residual deviations are naturally summarized by a

localized misprediction of how message profiles map into outcomes (a pivotality-illusion channel).

At the same time, the evidence should not be read as a definitive causal separation among all non-

Bayesian updating models or among all potential moral and social motivations. Establishing sharper

causal distinctions would require follow-up designs that exogenously vary priors and information,

or that isolate belief updating from strategic feedback. Within the present committee environment,

however, the disciplined conclusion is that belief distortions provide the most economical account of

the joint restrictions implied by messaging and voting behavior.
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Dal Bó, E. (2007). Bribing voters. American Journal of Political Science, 51(4):789–803.

de Condorcet, M. (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues
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A Supplementary technical material

A.1 Companion paper and shared experimental data

This paper and Breitmoser and Valasek (2024) use the same experimental dataset. The companion
paper studies how the choice of voting rule (Majority versus Unanimity) affects outcomes in the
presence of expressive incentives. The present paper instead uses the joint distribution of private
signals, messages, and votes to diagnose which departures from Bayesian equilibrium are empirically
useful for organizing committee behavior. In particular, our identifying discipline comes from fitting
communication and voting simultaneously, and from testing structural restrictions on beliefs and on
the mapping from messages to outcomes.

A.2 Exact model definition, belief distortion, and equilibrium objects

Game form. The environment is the voting game Γ in Section 2.1. There are N = 3 players, a
binary state ω ∈ {R,B}, conditionally independent private signals si ∈ {R,B} with Pr(si = ω | ω) =
α ∈ (1/2,1), and common prior Pr(ω = R) = 1/2. After observing si, each player sends a binary
message mi ∈ {R,B} and then, after observing the message profile, submits a binary vote vi ∈ {R,B}.
The voting rule D ∈ {Majority,Unanimity} maps votes into a committee decision X ∈ {R,B}; for
Unanimity we use the reduced-form default-R convention described in Section 2.1. Payoffs are given
by (2).

A (pure or mixed) strategy for player i is a pair (σi,τi), where σi(·) maps signals into distributions
over messages and τi(·) maps voting-stage information sets into distributions over votes. Throughout
we restrict attention to symmetric strategies (σ,τ) and use the sufficient-statistic representation from
the main text: σ(s) is the probability of sending R after signal s, and τ(s,mi,M) is the probability of
voting R after signal s, own message mi, and M = #{ j : m j = B}.

Belief distortion. Let Tκ be the log-odds distortion defined in (3). Given a strategy profile and an
information set I, write

pB(I) ≡ Pr(ω = R | I)

for the Bayesian posterior induced by the objective model and the strategy profile. The distorted
posterior is

pκ(I) ≡ Tκ

(
pB(I)

)
. (22)

We assume κ > 0 is common knowledge and that agents evaluate expected payoffs using pκ(·) rather
than pB(·).

Sequential optimality with distorted beliefs. Fix κ > 0. At each information set, continuation
payoffs are computed under the distorted posterior (22) and the continuation strategies and voting
rule.

Definition 8 (Distorted sequential equilibrium). Fix κ > 0. A distorted sequential equilibrium is a
symmetric strategy profile (σ,τ) together with a system of Bayesian posteriors pB(·) such that: (i)
pB(·) is Bayes-consistent with (σ,τ) on the equilibrium path; (ii) at every information set, prescribed
actions maximize expected utility when beliefs are evaluated using the distorted posterior system
pκ(·) defined by (22).

Definition 9 (Distorted logit QRE). Fix (κ,λ) with κ > 0 and λ > 0. A distorted logit QRE is a
symmetric strategy profile (σ,τ) such that at every information set I, each feasible action a is chosen
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with probability proportional to exp{λEUκ(a | I)}, where EUκ(a | I) is the continuation expected
utility computed under distorted beliefs pκ(·) and continuation play given by (σ,τ).

Equilibrium selection (when multiple equilibria exist). When the benchmark model admits mul-
tiple symmetric equilibria under the experimental parameters, we select among them as follows. First,
we restrict attention to symmetric equilibria. Second, we select equilibria that maximize a represen-
tative agent’s ex ante expected payoff (under the common prior and symmetry). Third, if ties remain,
we select the limit point of the (appropriate) distorted logit QRE as λ→∞ in the sense of Definition 9.

A.3 Expected payoffs in messaging and voting information sets

This subsection records the probability objects used to compute continuation payoffs under a given
symmetric strategy profile (σ,τ).

Induced distribution over terminal histories. Let h = (ω,s,m,v) denote a terminal history, where
s = (s1,s2,s3), m = (m1,m2,m3), and v = (v1,v2,v3). Conditional independence of signals implies

Pr(s | ω) =
3

∏
i=1

Pr(si | ω), Pr(si = ω | ω) = α, Pr(si ̸= ω | ω) = 1−α.

Given (σ,τ), the induced probability of a terminal history is

Pr
σ,τ
(h) = Pr(ω)

3

∏
i=1

Pr(si | ω)
3

∏
i=1

Pr
σ
(mi | si)

3

∏
i=1

Pr
τ

(
vi | si,mi,M(m)

)
, (23)

where M(m) = #{ j : m j = B} and Pr(ω = R) = Pr(ω = B) = 1/2. The realized committee decision
is X = X(v) as determined by the voting rule D.

Voting-stage continuation payoff. Fix player i and a voting-stage information set IV
i = (si,mi,M),

where M is the total number of B messages in the committee. For a contemplated vote vi ∈ {R,B},
the (Bayesian) continuation payoff is

EUB
i (vi | IV

i ) = ∑
ω

∑
s−i

∑
m−i :M(mi,m−i)=M

∑
v−i

πi
(
X(vi,v−i),ω,vi

)
Pr
σ,τ

(
ω,s−i,m−i,v−i | IV

i ,vi
)
, (24)

where the conditional probability is induced by (23) given (si,mi) and the restriction on M. Under κ-
distortion, the same object is computed with Pr(ω = · | IV

i ) replaced by the distorted posterior pκ(IV
i )

in (22). The voting best-response condition and the pivotality formulation in Section 3.3 follow by
comparing EUκ

i (B | IV
i ) and EUκ

i (R | IV
i ).

Messaging-stage continuation payoff. Fix player i and a messaging-stage information set given
by the private signal si. For a contemplated message mi ∈ {R,B}, the continuation payoff integrates
over the subsequent message profile, votes, and outcomes:

EUB
i (mi | si) = ∑

ω

∑
s−i

∑
m−i

∑
v

πi
(
X(v),ω,vi

)
Pr
σ,τ

(
ω,s−i,m−i,v | si,mi

)
, (25)

with the conditional probability again induced by (23). Under κ-distortion, the posterior Pr(ω = · | si)
entering the conditional distribution is replaced by its distorted counterpart pκ(si), as in (22). The
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payoff differences dEP(s) used in Section 3.2 and in (20) are obtained from (25) by taking the
difference between mi = B and mi = R.

Computational remark. Because N = 3 and all variables are binary, the sums in (24)–(25) are
finite and small. Under symmetry and conditional independence, many terms can be grouped by
the sufficient statistics used in the main text (own signal, own message, and the total number of B
messages), which is the basis for the numerical prediction and estimation routines reported in the
Appendix.

A.4 Proofs of theoretical predictions

This appendix collects formal results underlying the theoretical “predictions” used in the main text.
Throughout, the primitives and equilibrium objects are as in Sections 2.1–2.2 and Appendix A.2.
In particular, N = 3, ω ∈ {R,B}, signals satisfy Pr(si = ω | ω) = α ∈ (1/2,1) with common prior
Pr(ω = R) = 1/2, and payoffs are given by (2).

Selection for point predictions. When we report a single “benchmark” prediction (for either Bayesian
or distorted beliefs), we refer to the limiting-logit selection described in Appendix A.7. For conve-
nience we state the object here.

Definition 10 (Limiting-logit point prediction). Fix a behavioral specification (Bayesian beliefs or
distorted beliefs) and the extensive-form logit response defined in Appendix A.2 and Definition 9. For
each precision λ > 0, let (σλ,τλ) denote a symmetric logit-QRE of the induced game. A limiting-
logit point prediction is any accumulation point of (σλ,τλ) along a sequence λn → ∞. When multiple
accumulation points exist, we report the limit selected by the numerical homotopy procedure in Ap-
pendix A.7.

Majority: voting incentives and a useful threshold

The following lemma records a convenient decomposition: under Majority, the only way a vote
affects the committee outcome is through pivotality, whereas the expressive payoff is obtained when-
ever one votes R, independently of pivotality.

Lemma 2 (Voting incentives under Majority). Fix a voting-stage information set I for player i under
Majority. Let

p(I) ≡ Pr(ω = B | I) and π(I) ≡ Pr(i is pivotal | I),

where pivotal means that the committee outcome equals B if i votes B and equals R if i votes R. Hold-
ing continuation play fixed, the expected payoff difference between voting B and voting R satisfies

EU(B | I)−EU(R | I) = π(I)C (2p(I)−1) − K. (26)

In particular, if π(I) = 1 (pivotality is certain at I), then voting B is optimal if and only if p(I) >
1
2(1+K/C).

Proof. If i is not pivotal at I, the committee outcome is the same under either vote, so the only
payoff difference comes from the expressive term: voting R yields K and voting B yields 0, giving
EU(B)−EU(R) = −K in non-pivotal states. If i is pivotal, the committee outcome equals B under
vote B and equals R under vote R, so the common-value payoff difference is C · 1{ω = B}−C ·
1{ω = R} = C(21{ω = B}− 1), with expectation C(2p(I)− 1); the expressive difference remains
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−K. Taking expectations and weighting by π(I) yields (26). The final claim follows by setting
π(I) = 1.

Lemma 3 (Pivotal-vote threshold under Majority). Fix a voting-stage information set at which player
i is pivotal in the sense that the committee outcome equals B if she votes B and equals R if she votes
R. Let p ≡ Pr(ω = B) denote her belief at that information set. Under Majority, voting B is optimal
if and only if

p > p⋆ ≡ 1
2

(
1+

K
C

)
. (27)

For the experimental calibrations, p⋆ = 0.625 in the Low treatment (C,K) = (40,10) and p⋆ = 5/7≈
0.7143 in the High treatment (C,K) = (35,15).

Proof. This is the special case π(I) = 1 of Lemma 2. The numerical values follow by substitution.

Benchmark Bayesian equilibrium under Majority

Proposition 2 (Benchmark equilibrium: High treatment under Majority). In the High treatment
(C,K) = (35,15) under Majority, there exists a symmetric sequential equilibrium in which all players
vote R at every voting information set. In that equilibrium, messages are payoff-irrelevant on path;
under the limiting-logit selection of Definition 10, the corresponding on-path message behavior is
babbling, σ(R) = σ(B) = 1/2.

Proof. Consider the voting strategy τ ≡ 1, i.e. every player votes R with probability one at every
voting information set. Given τ ≡ 1, the committee outcome is X = R regardless of messages. Hence,
at any voting information set, deviating from R to B cannot affect X and strictly lowers payoff by
forfeiting the expressive bonus K. Therefore τ ≡ 1 is sequentially rational for any beliefs.

Given τ ≡ 1, messages do not affect any player’s payoff on path, so any message strategy is
sequentially rational on path; beliefs can be completed off path to obtain a symmetric sequential
equilibrium.

Under the limiting-logit selection, equal continuation payoffs from the two messages imply that
the logit best response assigns probability 1/2 to each message at every on-path messaging informa-
tion set. Therefore σ(R) = σ(B) = 1/2 at the selected limit.

Lemma 4 (Existence of limiting-logit predictions in finite games). Fix any behavioral specification
(Bayesian or distorted) and any treatment. For each λ > 0, a symmetric logit-QRE exists. Moreover,
any sequence of symmetric logit-QREs (σλn ,τλn) with λn → ∞ has a convergent subsequence, and
any accumulation point is a symmetric sequential equilibrium of the corresponding behavioral game.

Proof. For each λ > 0, the logit best-response correspondence maps a product of finite simplices into
itself and is continuous (indeed single-valued) given the finiteness of the game tree and the continuity
of expected payoffs in strategies. Existence of a fixed point follows from Brouwer’s theorem, and
symmetry can be imposed by restricting attention to the symmetric subspace.

Compactness of the product of simplices implies any sequence has a convergent subsequence.
Standard arguments for logit response in finite extensive-form games imply that as λ → ∞, logit best
responses place vanishing probability on strictly suboptimal actions at any reached information set,
so any accumulation point is sequentially rational given the induced beliefs; with beliefs completed
by Bayes’ rule on path, this yields a symmetric sequential equilibrium.
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Proposition 3 (Benchmark equilibrium: Low treatment under Majority (selected numerical predic-
tion)). In the Low treatment (C,K) = (40,10) under Majority, the benchmark equilibrium point pre-
diction reported in the main text is the limiting-logit point prediction of Definition 10 under Bayesian
beliefs. The resulting strategy profile is a symmetric sequential equilibrium (Lemma 4), and its nu-
merical values are computed as described in Appendix A.7.

Proof. For each λ > 0, the symmetric Bayesian logit-QRE exists by Lemma 4. The point prediction
is, by definition, the accumulation point selected by the numerical procedure in Appendix A.7. That
accumulation point is a symmetric sequential equilibrium by Lemma 4. The numerical values stated
in the main text are those returned by the algorithm.

Truthful-messaging benchmark (lying aversion) under Majority

Proposition 4 (Truthful messaging benchmark under Majority). Assume truthful messaging is ex-
ogenously imposed, i.e. mi = si for all i (the “lying aversion” benchmark). Under Majority:

1. In the High treatment (C,K) = (35,15), voting R strictly dominates voting B at every voting
information set; hence the unique symmetric equilibrium outcome has all agents voting R.

2. In the Low treatment (C,K) = (40,10), voting R is optimal at every voting information set
except when (s1,s2,s3) = (B,B,B). At that information set there is a unique symmetric mixed
equilibrium in which each player votes B with probability

q⋆ =
1
2
+

√
114
76

≈ 0.6405, (28)

and votes R with probability 1−q⋆ ≈ 0.3595.

Proof. Under truthful messaging, the message profile reveals the full signal profile. Hence the voting
stage following any realized (s1,s2,s3) is a complete-information voting game in which all players
share the same posterior p = Pr(ω = B | s1,s2,s3).

Let pBBB ≡ Pr(ω = B | B,B,B). Bayes’ rule yields

pBBB =
α3

α3 +(1−α)3 . (29)

For α = 0.6, pBBB = 27/35.

Step 1 (High treatment). Fix any signal profile and any conjecture about the other two votes.
Under Majority, π(I)≤ 1/2 at any information set I in a symmetric 3-player voting subgame, because
pivotality requires a 1–1 split among the other two votes. By Lemma 2,

EU(B | I)−EU(R | I) ≤ 1
2

C (2pBBB −1)−K.

In the High treatment, substituting C = 35, K = 15, and pBBB = 27/35 yields 1
2 ·35 · (19/35)−15 =

9.5− 15 < 0. Hence EU(B | I) < EU(R | I) at every voting information set, so voting R strictly
dominates voting B. This proves 1.

Step 2 (Low treatment). In the Low treatment, p is maximized at BBB, so if voting B is not
optimal at BBB it cannot be optimal elsewhere. Consider the complete-information voting game at
BBB and let q denote the common probability with which each player votes B there. If player i votes
B, the committee selects B unless both other players vote R (probability (1− q)2). If player i votes
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R, the committee selects B only if both other players vote B (probability q2). Using payoffs (2),
indifference EU(B) = EU(R) reduces to

2C q(1−q)(2pBBB −1) = K.

Substituting (C,K) = (40,10) and pBBB = 27/35 yields 152q2 −152q+35 = 0, whose two roots are
q = 1

2 ±
√

114
76 . The unique symmetric equilibrium with q ≥ 1/2 is (28). At any other signal profile,

the posterior is strictly smaller than pBBB, so the same inequality implies EU(B | I) < EU(R | I) for
all q ∈ [0,1], and thus voting R is optimal. This proves 2.

Belief distortion and monotone comparative statics

For convenience we restate the distortion mapping in the notation used in the main text.

Definition 11 (Log-odds distortion). For κ > 0, define Tκ : [0,1]→ [0,1] by

Tκ(p) =
pκ

pκ +(1− p)κ
. (30)

Lemma 5 (Log-odds scaling and extremeness). For any p ∈ (0,1),

log
( Tκ(p)

1−Tκ(p)

)
= κ log

( p
1− p

)
.

Moreover, if p > 1/2 then Tκ(p) is strictly increasing in κ and limκ→∞ Tκ(p) = 1; if p < 1/2 then
Tκ(p) is strictly decreasing in κ and limκ→∞ Tκ(p) = 0; and limκ→0 Tκ(p) = 1/2 for all p ∈ (0,1).

Proof. By (30),
Tκ(p)

1−Tκ(p)
=

pκ

(1− p)κ
=
( p

1− p

)κ

,

and taking logs yields the scaling identity. Monotonicity in κ follows because p
1−p > 1 if and only if

p > 1/2, and limits follow from the fact that the log-odds diverge to ±∞ as κ → ∞ and converge to 0
as κ → 0.

Lemma 6 (Monotone action shifts under log-odds distortion). Fix an information set I and two
actions a↑,a↓. Let p denote the belief that the payoff-relevant state equals the state that favors a↑, i.e.
p = Pr(ω = ω↑ | I). Suppose that, holding continuation play fixed, the expected payoff difference

∆(p) ≡ EU(a↑ | p, I)−EU(a↓ | p, I)

is (weakly) increasing in p. Then ∆(Tκ(p)) is (weakly) increasing in κ whenever p > 1/2, and
(weakly) decreasing in κ whenever p < 1/2. Under logit response with precision λ > 0, the choice
probability of a↑ inherits the same monotonicity in κ.

Proof. By Lemma 5, Tκ(p) moves monotonically in κ away from 1/2 in the direction of p. Com-
posing with the (weakly) increasing function ∆(·) yields the first claim. Under logit response with
precision λ > 0, Pr(a↑ | I) =

(
1+exp{−λ∆(·)}

)−1 is strictly increasing in ∆, so the same monotonic-
ity carries over.
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Overreaction predictions under Majority (numerical values)

The overreaction predictions reported in the main text for Majority are computed by solving the
symmetric distorted logit-QRE fixed point for (σ,τ) (Definition 9) and then taking the limit as λ → ∞

in the sense of Definition 10. The numerical procedure is described in Appendix A.7.

Unanimity: truth-telling in informative continuations

The Unanimity implementation in Section 2.1 selects B if and only if all votes are B; otherwise the
enforced final vote (and the committee outcome) is R. This creates a natural veto property: any player
can ensure X = R by voting R.

Lemma 7 (Sufficient condition for B-type truth-telling under Unanimity). Fix Unanimity with default-
R enforcement. Consider a continuation in which, at the voting stage, players vote B at the all-B
message profile and vote R at all other message profiles. Suppose α > 1/2 and

pBBB ≡ Pr(ω = B | B,B,B) >
1
2

(
1+

K
C

)
. (31)

Fix a player i with signal si = B and suppose that, conditional on i sending mi = B, the all-B message
profile occurs with positive probability.9 Then sending message mi = B is a strict best response at the
messaging stage. For α = 0.6 and (C,K) ∈ {(40,10),(35,15)}, condition (31) holds.

Proof. Under the stated continuation, the committee selects B if and only if all three messages are B
(and hence all votes are B). Fix a player with si = B.

If she sends mi = R, the all-B message profile cannot occur and the outcome is X = R surely,
yielding expected payoff

C Pr(ω = R | si = B) + K.

If she sends mi = B, then on the event that the other two messages are also B, the outcome becomes
X = B and her payoff equals C Pr(ω = B | B,B,B) =CpBBB, whereas on the complement the outcome
remains X = R and her payoff equals C Pr(ω = R | si = B, ·)+K. Hence the expected payoff gain
from sending B rather than R equals the probability of reaching the all-B message profile times

CpBBB −
(
C(1− pBBB)+K

)
=C(2pBBB −1)−K,

which is strictly positive by (31) (equivalently Lemma 3). Under the stated positive-probability
condition, this yields a strict gain, hence mi = B is a strict best response. The final claim follows
because for α = 0.6, pBBB = 27/35 > 0.7143 ≥ 1

2(1+K/C) for both payoff calibrations.

Lemma 8 (R-type veto messaging under Unanimity). Fix Unanimity with default-R enforcement and
consider the same continuation as in Lemma 7. For any treatment and any α ∈ (1/2,1), a player with
signal si = R weakly prefers sending mi = R to sending mi = B, and strictly prefers mi = R whenever
the all-B message profile would occur with positive probability conditional on mi = B.

Proof. If i sends mi = R, the all-B message profile cannot occur and the outcome is X = R surely,
yielding C Pr(ω = R | si = R)+K. If instead she sends mi = B, then whenever the all-B message
profile occurs the outcome becomes X = B, in which case she forgoes the expressive bonus and
obtains the common-value payoff only when ω = B. Since Pr(ω = B | si = R)< 1/2 for α > 1/2, the

9If the all-B message profile has zero probability conditional on mi = B, then i is indifferent between messages under the
stated continuation, so strictness cannot be concluded.
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expression C(2Pr(ω = B | si = R)− 1)−K is strictly negative, so reaching the all-B profile strictly
lowers expected payoff; otherwise payoffs coincide. The conclusion follows.

A.5 Portability: heterogeneous preference intensities and perceived signal precision

This appendix records a portability observation. Even when committee members have heterogeneous
intensities for correctness across states, sufficiently high perceived signal precision can align induced
preferences over the committee decision at all empirically relevant information sets. This restores an
informative (truthful) equilibrium in a canonical cheap-talk committee game. The point is conceptual;
we do not estimate this extension.

Environment. There are N = 3 committee members and a binary state ω ∈ {R,B} drawn from
the common prior Pr(ω = R) = 1/2. Conditional on ω, each member i observes a private signal
si ∈ {R,B}, independently across i, with objective accuracy Pr(si = ω | ω) = α ∈ (1/2,1). Members
simultaneously send costless messages mi ∈ {R,B} and then vote vi ∈ {R,B}. Under Majority rule,
the committee decision is X = R if at least two votes equal R and X = B otherwise.

Members have (possibly heterogeneous) utilities ui(X ,ω) that satisfy correctness monotonicity:

ui(ω,ω)> ui(ω̄,ω) for all i and ω ∈ {R,B}, (32)

where R̄ = B and B̄ = R. Define state-specific gains from being correct,

∆
R
i ≡ ui(R,R)−ui(B,R)> 0, ∆

B
i ≡ ui(B,B)−ui(R,B)> 0.

Perceived signal precision. Fix a perceived signal accuracy α̃ ∈ (1/2,1) that is common knowl-
edge and is used for belief formation. In the main text, α̃ can be generated by the log-odds scaling
distortion with parameter κ; equivalently,

α̃(κ) =
ακ

ακ +(1−α)κ
, κ > 0, (33)

so that larger κ corresponds to higher “as-if” precision and α̃(κ) ↑ 1 as κ → ∞.

Lemma 9. Fix agent i and an information set I with posterior belief π ≡ Pr(ω = R | I). Choosing
X = R maximizes i’s expected utility if and only if

π > π
⋆
i ≡

∆B
i

∆R
i +∆B

i
. (34)

Proof. Compute the expected-utility difference:

EUi(R | I)−EUi(B | I) = π∆
R
i − (1−π)∆B

i .

This is positive if and only if π > ∆B
i /(∆

R
i +∆B

i ).

A sufficient condition for an informative equilibrium. Under truthful messages, the message
profile reveals the signal profile. With N = 3 and prior 1/2, the perceived posterior after observing a
majority of R signals (two R and one B) equals α̃, and after observing a majority of B signals equals
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1− α̃.10

Let
π̄
⋆ ≡ max

i
π
⋆
i , π

⋆ ≡ min
i

π
⋆
i .

Proposition 5. Suppose α̃ satisfies

α̃ > π̄
⋆ and 1− α̃ < π

⋆. (35)

Then the following strategy profile is a perfect Bayesian equilibrium under Majority rule: (i) each
agent sends the truthful message mi = si; (ii) after observing messages, each agent votes for the
alternative supported by the majority of messages (equivalently, for the majority of revealed signals).
In this equilibrium, the committee implements the majority of signals.

Proof. Fix beliefs induced by truth-telling. If the revealed signal majority is R, then the perceived
posterior is π = α̃ > π̄⋆ ≥ π⋆

i for all i, so Lemma 9 implies every agent strictly prefers X = R. If the
revealed signal majority is B, then π = 1− α̃ < π⋆ ≤ π⋆

i for all i, so every agent strictly prefers X = B.
Hence voting with the message majority is a best response for every agent at every information set
reached under truthful messages.

At the messaging stage, under Majority rule and the prescribed voting behavior, agent i’s message
affects the committee decision only when the other two messages are split (one R and one B). In that
event the committee decision equals i’s message. If si = R, the perceived posterior that ω = R equals
α̃ > π̄⋆ ≥ π⋆

i , so by Lemma 9 agent i strictly prefers X = R and hence strictly prefers sending mi = R
when pivotal. If si = B, the perceived posterior equals 1− α̃ < π⋆ ≤ π⋆

i , so agent i strictly prefers
X = B and hence strictly prefers sending mi = B when pivotal. Off the pivotal event, the message
does not affect X , so truth-telling is weakly optimal. This establishes sequential rationality at the
messaging stage and completes the equilibrium construction.

Interpretation. Proposition 5 provides a tractable sufficient condition under which increased re-
sponsiveness to private information (captured by high perceived precision α̃, or equivalently large κ

in (33)) aligns induced preferences over the committee decision even when agents differ in the rel-
ative intensity with which they value correctness across states. The result does not claim that belief
distortions are the only route to informative equilibria under heterogeneous preferences; it simply
illustrates how “as-if” high precision reduces scope for strategic misreporting driven by preference
conflicts under mixed evidence. This appendix also highlights why the expressive-payoff environ-
ment in the main text is nontrivial: with expressive incentives, truthful revelation need not elimi-
nate the voting-stage collective-action problem, whereas in the present reduced-form environment
(without expressive payoffs) sufficiently extreme perceived precision can align incentives over the
committee decision itself.

A.6 Messages-only diagnostic: state-contingent payoffs and implied state beliefs

This appendix records an auxiliary diagnostic used for interpretation in the main text. Conditional
on the true state, the realized continuation payoff from sending the message that matches the state
is substantially higher than the payoff from sending the opposite message (Table 8). This payoff
structure implies that any belief formation that overweights ω = s after observing a signal s makes
truthful messaging instrumentally attractive. At the same time, message data alone do not distinguish

10For example, with two R and one B, the likelihood ratio in favor of R equals α̃/(1− α̃), hence the posterior equals α̃ under
prior 1/2.
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belief distortions from nonstandard preferences over honesty, which is why the main text relies on
voting behavior for identification.

State-contingent continuation payoffs from messages. Let π̄(m,ω) denote the average realized
monetary payoff to a sender who chooses message m ∈ {R,B} when the realized state is ω ∈ {R,B},
integrating over subsequent play observed in the data. Define the state-contingent payoff difference

∆π(ω)≡ π̄(B,ω)− π̄(R,ω). (36)

Table 8 reports π̄(m,ω) by treatment. In all treatments, π̄(R,R)> π̄(B,R) and π̄(B,B)> π̄(R,B), i.e.
the message matching the state yields a large payoff advantage under realized continuation play.

Expected payoff differences given a belief about the state. Fix a sender who has received signal
s ∈ {R,B} and holds belief πs ≡ Pr(ω = R | s). The expected payoff advantage of message B over
message R is

∆EP(s)≡ EP(B | s)−EP(R | s) = πs ∆π(R)+(1−πs)∆π(B). (37)

Since ∆π(R)< 0 and ∆π(B)> 0 in Table 8, increasing πs makes B-messaging less attractive after s =
R and more attractive after s = B; equivalently, overweighting ω = s tends to increase the perceived
profitability of the truthful message.

Why messages alone are not identifying. One may combine (37) with a logit choice rule to back
out implied posteriors from observed message frequencies. We do not report that inversion here be-
cause (i) the paper’s identification strategy does not rely on messages alone and (ii) honest-messaging
preferences and belief distortions can generate similar message frequencies. The main text therefore
disciplines beliefs using voting behavior conditional on message profiles, which imposes additional
restrictions that a messages-only diagnostic cannot.

A.7 Computation of benchmark equilibria and limiting-logit predictions

This subsection documents how we compute the benchmark equilibrium predictions and the limiting-
logit selections reported in the main text and tables. The goal is that a reader can reproduce the objects
from the description below.

Strategy parametrization under symmetry. We restrict attention to symmetric behavioral strate-
gies (σ,τ) as in the main text. The messaging strategy is summarized by the two probabilities

σ(R)≡ Pr(mi = R | si = R), σ(B)≡ Pr(mi = R | si = B).

The voting strategy is summarized by

τ(s,m,M)≡ Pr(vi = R | si = s, mi = m, M = #{ j : m j = B}),

where M ∈ {0,1,2,3} counts the total number of B messages in the committee (including player i).
This is the sufficient-statistic representation used throughout.

Expected utilities. Given (σ,τ), the induced probability of terminal histories is given in (23).
Voting- and messaging-stage continuation expected utilities are computed by finite enumeration of
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terminal histories as in (24)–(25). In distorted-belief variants, the only modification is that the poste-
rior over the state used in these conditional expectations is replaced by pκ(·) as defined in (22); the
objective signal process and continuation strategies remain unchanged.

Logit best-response operators. Fix (κ,λ) with κ > 0 and λ > 0. For each information set I and
feasible action a ∈ {R,B}, define

BRκ,λ(a | I) ≡ exp{λEUκ(a | I)}
exp{λEUκ(R | I)}+ exp{λEUκ(B | I)}

.

A symmetric distorted logit QRE (Definition 9) is a fixed point (σ,τ) of these operators across all
information sets.

Numerical fixed-point computation. For each parameter configuration (rule D, payoffs (C,K),
signal accuracy α, distortion κ, and precision λ), we compute a symmetric fixed point as follows.

Step 1: initialization. Start from an interior strategy (σ(0),τ(0)) with all components in (0,1). To ad-
dress potential multiplicity, we use multiple initializations (including near-babbling and near-truthful
message profiles and several voting seeds).

Step 2: policy evaluation. Given (σ(t),τ(t)), compute EUκ(· | I) for all information sets by enumer-
ating terminal histories using (23) and the conditional expectations (24)–(25).

Step 3: logit update with damping. Update each component by a damped best response:

(σ(t+1),τ(t+1)) = (1−η)(σ(t),τ(t)) + ηBRκ,λ(· | ·),

with step size η ∈ (0,1] chosen to ensure contraction (we use a small η when oscillations are de-
tected).

Step 4: convergence and verification. Iterate until the sup-norm distance between successive iter-
ates falls below a tolerance. We additionally verify that the resulting strategy solves the fixed-point
equations up to tolerance by checking the maximum absolute residual across all information sets.

Limiting-logit selection. When the main text reports a “limiting-logit” prediction, we approximate
the λ → ∞ selection by evaluating the fixed point on an increasing grid of large λ values and checking
stability of (i) the qualitative pattern of play and (ii) the numerical values of the key strategy compo-
nents. The reported strategy is the largest-λ fixed point for which stability is attained. This procedure
implements the selection device described in Appendix A.2.

Efficiency and welfare calculations. Given any computed strategy profile (σ,τ), we compute (i)
ex ante expected payoff (under the common prior and symmetry) and (ii) the “efficiency” statistic
reported in the paper. The latter is the probability that the committee decision coincides with the
majority of private signals:

c(σ,τ) ≡ Pr
(
X = maj(s1,s2,s3)

)
,

where maj(·) is the majority operator on {R,B}3. Both objects are computed by summing (23) over
terminal histories that satisfy the relevant event.
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A.8 Detailed predictions: efficient limiting-logit equilibria

This subsection clarifies how the point predictions reported in the main text are selected when multi-
ple symmetric equilibria exist.

Benchmark (Bayesian) case. For the benchmark model we set κ = 1. If the symmetric limiting-
logit selection yields a unique prediction, we report its strategy components (σ,τ) and the implied
outcome statistics (e.g. c(σ,τ)). If multiple symmetric limiting-logit candidates arise from different
initializations, we select the equilibrium that maximizes ex ante expected payoff under the objective
model and symmetry. When ties remain, we select the equilibrium that is the stable limit of the logit
fixed points as λ increases along the grid used in Appendix A.7.

Belief-distorted (overreaction) case. For the belief-distorted model we fix κ ̸= 1 and compute
distorted logit QRE fixed points as above. The selection criterion is the same: among symmetric
candidates, we report the equilibrium that maximizes ex ante expected payoff, with ties broken by
the stable limiting-logit path as λ increases.

Perfect-overreaction benchmark. When we report the “perfect overreaction” benchmark corre-
sponding to κ → ∞, we approximate it by evaluating the distorted model at a sufficiently large κ and
verifying that the implied strategy components and outcome statistics are numerically stable to further
increases in κ. The reported objects should therefore be read as an accurate numerical approximation
to the κ → ∞ limit.

B Experimental Instructions (original)

Instruktionen

Dies ist ein Experiment zur Entscheidungsfindung. Vielen Dank für Ihre Teilnahme!

Bitte lesen Sie diese Instruktionen sorgfältig. Es ist wichtig, dass Sie während des gesamten Experimentes
nicht mit anderen Teilnehmer kommunizieren. Falls Sie Fragen habe, lesen Sie bitte noch einmal in diesen
Instruktionen nach. Bei weiteren Fragen melden Sie sich bitte. Wir werden dann zu Ihnen kommen und die
Fragen persönlich beantworten. Bitte fragen Sie nicht laut.

Das gesamte Experiment läuft über die Computer Terminals, und jedwede Interaktion zwischen Ihnen
wird über die Computer laufen. Sie werden für Ihre Teilnahme am Ende des Experimentes in bar bezahlt.
Unterschiedliche Teilnehmer werden unterschiedliche Beträge verdienen. Ihr Verdienst hängt sowohl von
Ihren Entscheidungen ab als auch von den Entscheidungen anderer Teilnehmer und Zufall.

Das Experiment läuft über 50 Runden. Die Regeln sind über alle Runden und für alle Teilnehmer diesel-
ben. Zu Beginn jeder Runde werden Sie zufällig in Gruppen aus drei Teilnehmern eingeteilt. In jeder Runde
werden Sie nur mit den Teilnehmern in Ihrer Gruppe interagieren. Sie werden die Identität der anderen Teil-
nehmer in Ihrer Gruppe nicht erfahren. Wir werden die anderen Teilnehmern in Ihrer Gruppe als “Teilnehmer
2” und “Teilnehmer 3” bezeichnen, aber beachten Sie, dass nach jeder Runde die Gruppen neu eingeteilt wer-
den. Ihre Gruppe wird eine Entscheidung basierend auf einer Abstimmung fällen. Diese Entscheidung ist
einfach die Wahl zwischen zwei Urnen, der blauen Urne und der roten Urne. Das genaue Prozedere erklären
wir Ihnen im Folgenden.
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Table 13: The sequential equilibria that can be represented as limiting logit equilibria in the four
treatment

(a) Majority: N = 3, P = 1, K = 10/40, α = 0.6

σ(R) σ(B) τ(R,B,0−2) τ(B,R,0−2) τ(B,B,0−2) π c

Equilibrium 1 0.56 1 1 1 1 1 1 1 0 1 0.7696 0.6165
Lying Aversion 1 0 1 1 1 1 1 1 1 1 0.36 0.7811 0.5987
Overreaction 1 0.1 1 1 1 1 1 1 1 0 0.15 1.102 0.9532
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.625 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.625 0.5
1 0 1 1 1 1 1 0 1 1 0 0.791 0.64
0 0 1 1 1 1 1 1 1 1 1 0.7495 0.5
1 0 1 1 1 1 1 1 1 1 1 0.75 0.5

(b) Majority: N = 3, P = 1, K = 15/35, α = 0.6

σ(R) σ(B) τ(R,B,0−2) τ(B,R,0−2) τ(B,B,0−2) π c

Equilibrium 0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
Lying Aversion 1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5
Overreaction 1 0.28 1 1 1 1 1 1 1 0 0.31 1.1571 0.8446
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7143 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7143 0.5
1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5
1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5
1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5

(c) Unanimity: N = 3, P = 1, K = 10/40, α = 0.6

σ(R) σ(B) τ(R,B,0−2) τ(B,R,0−2) τ(B,B,0−2) π c

Equilibrium 0.5 0.5 1 1 1 0 0 0 0 0 0 0.791 0.64
Lying Aversion 1 0 1 1 1 0.99 1 0 0.95 0 0 0.791 0.64
Overreaction 1 0 1 1 0 1 0 0 1 0 0 1.114 1
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6777 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6777 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6777 0.5
1 0 1 1 1 1 1 0 1 1 0 0.791 0.64
1 0 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0 0.7069 0.5995
0 0 1 1 1 1 1 0 1 1 0 0.7905 0.64

(d) Unanimity: N = 3, P = 1, K = 15/35, α = 0.6

σ(R) σ(B) τ(R,B,0−2) τ(B,R,0−2) τ(B,B,0−2) π c

Equilibrium 0.5 0.5 1 1 1 0 0 0 0 0 0 0.9446 0.64
Lying Aversion 1 0 1 1 1 1 1 0 0.99 0 0 0.9446 0.64
Overreaction 1 0 1 1 0 1 0 0 0.97 0 0 1.2032 0.9999
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8047 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8047 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8047 0.5
1 0 1 1 1 1 1 0 1 1 0 0.9446 0.64
1 0 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0 0.8161 0.5995
0 0 1 1 1 1 1 0 1 1 0 0.9441 0.64

Die Urne. Es gibt zwei Urnen: die blaue Urne und die rote Urne. Die blaue Urne enthält 3 blaue Kugeln
und 2 rote Kugeln. Die rote Urne enthält 3 rote Kugeln und 2 blaue Kugeln. Zu Beginn jeder Runde wird
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Table 14: Theoretical predictions across treatments

Messages Voting
σ(R) σ(B) τ(R,R,0) τ(B,R,0) τ(R,R,1) τ(R,B,1) τ(B,B,1) τ(B,R,1) τ(R,R,2) τ(R,B,2) τ(B,B,2) τ(B,R,2) τ(R,B,3) τ(B,B,3)

Majority 40-10
Equilibrium 1 0.56 1 1 1 1 1 1 1 1 0 1 1 1
Lying Aversion 1 0 1 1 1 1 1 1 1 1 1 1 1 0.36
Overreaction 1 0.1 1 1 1 1 1 1 1 1 0 1 1 0.15
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Majority 35-15
Equilibrium 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Lying Aversion 1 0 1 1 1 1 1 1 1 1 1 1 1 1
Overreaction 1 0.28 1 1 1 1 1 1 1 1 0 1 1 0.31
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Unanimity 40-10
Equilibrium 0.5 0.5 1 0 1 1 0 0 1 1 0 0 1 0
Lying Aversion 1 0 1 1 1 1 1 1 1 1 0 0 1 0
Overreaction 1 0 1 1 1 1 1 0 0 1 0 0 0 0
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Unanimity 35-15
Equilibrium 0.5 0.5 1 0 1 1 0 0 1 1 0 0 1 0
Lying Aversion 1 0 1 1 1 1 1 1 1 1 0 0 1 0
Overreaction 1 0 1 1 1 1 1 0 0 1 0 0 0 0
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Note: σ(s) is the probability of sending message A given the signal s ∈ {A,B}. τ(s,m,M) is the probability of voting A as a function of one’s signal s, message m, and the number M of B
messages overall (i.e. in aggregate over all players). The parameters (τLie,τLow,τMed,τHigh) allow adaptation to subjects’ behavior, with the theoretical ex-ante hypothesis τLow < τMed < τHigh.



eine der Urnen zufällig gewählt. Diese Urne bezeichnen wir als gewählte Urne. Jede Urne wird mit gleicher
Wahrscheinlichkeit gewählt, also jeweils mit 50% Wahrscheinlichkeit. Sie werden nicht erfahren welche Urne
gewählt wurde bevor Sie Ihre Entscheidung treffen.

Die Kugel. Nachdem die Urne gewählt wurde, zeigt der Computer jedem von Ihnen eine Kugel, die zufällig
aus der Urne Ihrer Gruppe gezogen wurde. Für jeden von Ihnen wird eine eigene Kugel gezogen (“mit
Zurücklegen”). Jede Kugel in der Urne hat die gleiche Wahrscheinlichkeit, gezogen zu werden. Falls die
blaue Urne für Ihre Gruppe gewählt wurde, ist für jeden von Ihnen die Wahrscheinlichkeit, eine blaue Kugel
zu sehen, genau 60%, und die Wahrscheinlichkeit eine rote Kugel zu sehen ist 40%. Falls die rote Kugel für
Ihre Gruppe gewählt wurde, ist für jeden von Ihnen die Wahrscheinlichkeit, eine blaue Kugel zu sehen, genau
40%, und die Wahrscheinlichkeit eine rote Kugel zu sehen ist 60%.

Die Nachricht. Nachdem jedem von Ihnen eine Kugel präsentiert wurde, kann jeder eine Nachricht senden.
Die Nachricht ist entweder “rote Kugel” oder “blaue Kugel”. Die Nachricht, die Sie senden, kann der Ihnen
präsentierten Kugel gleichen, kann aber auch anders sein. Dies hängt von Ihrer Strategie und Ihren Präferenzen
ab. Wenn alle Teilnehmer Ihre Nachricht versendet haben, werden Ihnen die Nachricht Ihrer Gruppe gezeigt.
Da sie zu dritt sind, sieht jeder von Ihnen drei Nachrichten (inklusive der eigenen Nachricht), und jede dieser
Nachrichten ist eine rote Kugel oder eine blaue Kugel.

Die Abstimmung [Mehrheit]. Nachdem Sie alle Nachrichten gesehen haben, erfolgt die Abstimmung.
Sie können entweder für “rote Urne” oder “blaue Urne” stimmen. Ihre Stimme kann der Kugel, die Ihnen
gezeigt wurde, oder der Nachricht, die sieht versendet haben, gleichen, muss aber nicht. Nur die Abstimmung
zählt für Ihre Auszahlung.

Die Gruppenentscheidung ergibt sich aus der Mehrheitsregel. Falls mindestens zwei Teilnehmer Ihrer
Gruppe (einschließlich Ihnen selbst) für die “rote Urne” stimmten, ist die Gruppenentscheidung “rote Urne”.
Falls mindestens zwei Teilnehmer für die “blaue Urne” stimmten, ist die Gruppenentscheidung “blaue Urne”.

Auszahlung. Ihre Auszahlung pro Runde ergibt sich als Summe zweier Komponenten. Einerseits, wenn
die Gruppenentscheidung mit der vom Computer gewählten Urne übereinstimmt, erhält jedes Mitglied Ihrer
Gruppe 40 Taler. Wenn die Gruppenentscheidung nicht richtig ist, erhält jeder von Ihnen 0 Taler aus der
Gruppenentscheidung. Andererseits, wenn Sie individuell für die “rote Urne” gestimmt haben, erhalten Sie
persönlich zusätzlich 10 Taler. Wenn Sie für die “blaue Urne” stimmten, ist Ihr zusätzlicher Verdienst 0 Taler.
Die folgenden Tabellen fassen dies noch einmal zusammen.

Der Computer wählte die blaue Urne
Die Stimmen der anderen Gruppenmitglieder sind

Ihre Stimme Blau + Blau Blau + Rot Rot + Blau Rot + Rot
Blaue Urne 40 40 40 0
Rote Urne 50 10 10 10

Der Computer wählte die rote Urne
Die Stimmen der anderen Gruppenmitglieder sind

Ihre Stimme Blau + Blau Blau + Rot Rot + Blau Rot + Rot
Blaue Urne 0 0 0 40
Rote Urne 10 50 50 50

Informationen am Ende jeder Runde. Sobald Sie und die anderen Teilnehmer abgestimmt haben,
ist die Runde beendet. Zum Ende jeder Runde erhalten Sie die folgenden Informationen: Nachrichten und
Stimmen aller Teilnehmer Ihrer Gruppe, die Gruppenentscheidung, die vom Computer gewählte Urne, Ihre
Auszahlung.
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Abschließender Verdienst. Am Ende des Experimentes werden die erworbenen Taler aller 50 Runden
addiert und in Euro umgewandelt. Jeder Taler ist dann einen Cent wert. 100 Taler sind also 1 Euro wert.
Zusätzlich erhalten Sie eine Basiszahlung von 5 Euro. Die Auszahlung erfolgt privat und für Sie ergibt sich
keine Verpflichtung, anderen Ihren Verdienst mitzuteilen.

Die Abstimmung [Einstimmigkeit]. Nachdem Sie alle Nachrichten gesehen haben, erfolgt die Abstim-
mung. Sie können entweder für “rote Urne” oder “blaue Urne” stimmen. Ihre Stimme kann der Kugel, die
Ihnen gezeigt wurde, oder der Nachricht, die sieht versendet haben, gleichen, muss aber nicht. Nur die Ab-
stimmung zählt für Ihre Auszahlung.

Die Gruppenentscheidung muss einstimmig sein. Wenn alle Teilnehmer in Ihrer Gruppe für die “rote
Urne” stimmen, ist die Gruppenentscheidung “rote Urne”. Wenn alle für die “blaue Urne” stimmen, ist die
Gruppenentscheidung “blaue Urne”. Ansonsten beginnt eine zweite Abstimmungsrunde. Wenn nun alle drei
Stimmen gleich sind, ergibt sich daraus die Gruppenentscheidung. Ansonsten gibt es eine dritte, finale Ab-
stimmungsrunde. Wenn jetzt alle drei Stimmen gleich sind, ergibt sich daraus die Gruppenentscheidung. An-
dernfalls werden alle Stimmen, und damit die Gruppenentscheidung, auf rote Urne gestellt.

Fragebogen

1. Zuerst wählt der Computer eine Urne. Wie hoch ist die Wahrscheinlichkeit, dass der Computer die rote
Urne wählt?

□ 25% □ 50% □ 75%

2. Der Computer zeigt Ihnen eine Kugel, die zufällig aus der gewählten Urne gezogen wurde. Wenn die
gewählte Urne blau ist, wie hoch ist die Wahrscheinlichkeit, dass Ihnen eine rote Kugel gezeigt wird?

□ 40% □ 60% □ 80%

3. Richtig oder falsch?
Nachdem Ihnen die Kugel gezeigt wurde, können Sie eine Nachricht versenden: rote Kugel oder blaue
Kugel. Diese Nachricht muss mit der Ihnen gezeigten Kugel übereinstimmen.

4. Richtig oder falsch?
Die Nachrichten aller drei Gruppenmitglieder werden allen Gruppenmitgliedern gezeigt. Danach können
Sie abstimmen, und ihre Stimme darf nicht mit Ihrer Nachricht übereinstimmen.

5. Falls die gewählte Urne rot ist, Sie für die blaue Urne stimmten und die anderen beiden Teilnehmer für
die rote Urne stimmten, wie hoch ist Ihre Auszahlung?

□ 10 Taler □ 40 Taler □ 50 Taler

6. Falls die gewählte Urne blau ist, Sie für die rote Urne stimmten, ein anderer Teilnehmer für die rote
Urne stimmte, und der dritte Teilnehmer für die blaue Urne stimmte, wie hoch ist Ihre Auszahlung?

□ 10 Taler □ 40 Taler □ 50 Taler

7. Richtig oder falsch?
Der Computer wird alle Teilnehmer zufällig in Gruppen einteilen, und in jeder Runde wird eine neue
Einteilung vorgenommen.

C Experimental Instructions (translation)

This section contains a literal translation of both experimental instructions and control questionnaire (which
originally are in German and available from the authors), and a composite screenshot displaying all the (Ger-
man) words actually used in the experiment and their arrangement on the screen. This screenshot is composite
in the sense that it displays all items at once (the message query, the vote query and the resulting payoff table)
which in the experiment were displayed sequentially.
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Instructions

This is an experiment in group decision making. Thank you for participating!

Please read these instructions very carefully. It is important that you do not talk to other participants during
the entire experiment. In case you do not understand some parts of the experiment, please read through these
instructions again. If you have further questions after hearing the instructions, please give us a sign by raising
your hand out of your cubicle. We will then approach you in order to answer your questions personally. Please
do not ask anything aloud.

The entire experiment will take place through computer terminals, and all interaction between you will
take place through the computers. You will be paid for your participation in cash, at the end of the experiment.
Different subjects may earn different amounts. What you earn depends partly on your decisions, partly on the
decisions of others, and partly on chance.

The experiment consists of 50 rounds. The rules are the same for all rounds and for all participants. At the
beginning of each round you will be randomly assigned to a group of 3 participants (including yourself). You
will not know the identity of the other participants. After each round, groups will be randomly reassigned, but
for simplicity we will always refer to the other participants in your group as “Participant 2” and “Participant
3”. In each round you will only interact with the participants in your group. Your group will make a decision
based on the votes of all group members. The decision is simply a choice between two jars, the blue jar and
the red jar. In what follows we will explain to you the procedure in each round.

The Jar. There are two jars: the blue jar and the red jar. The blue jar contains 3 blue balls and 2 red balls.
The red jar contains 3 red balls and 2 blue balls. At the beginning of each round, one of the two jars will be
randomly selected. We will call this the selected jar. Each jar is equally likely to be selected, i.e. each jar is
selected with a 50% chance. You will not be told which jar has been selected when making your decision.

The Ball. After a jar is selected for your group, the computer will show each of the participants in your
group (including yourself) the color of one ball randomly drawn from that jar. Since you are three in your
group, the computer performs this random draw three times. Each ball in the jar will be equally likely to be
drawn for every member of the group. If the selected jar is blue, each member of your group has a chance of
60% of receiving a blue ball and a chance of 40% of receiving a red ball. If the selected jar is red, each member
of your group has has a chance of 40% of receiving a blue ball and a chance of 60% of receiving a red ball.
You will only see the color of your own ball.

The Message. After the ball has been presented to each of you, each player may send a message. The
message is either “red ball” or “blue ball”. The message you send may be equal to the ball you have been
shown, or it may be different. It depends on your strategy and your preferences which message to send. When
all group members have entered their messages, all of you will be shown all messages. Since there are three
participants per group, each of you will see the same three messages, and each of these messages is either a
red ball or a blue ball.

The Vote [Majority]. After all messages have been presented to each of you, each player is called to vote.
You may vote either “red jar” or “blue jar”. Your vote may but need not be related to the ball you have been
shown or to the message you have sent. Only your vote and the group decision will affect your payoffs.

The group decision is determined by majority. If at least two participants in your group (including yourself)
vote “red jar”, then the group decision is “red jar”. If at least two vote “blue jar”, then the group decision is
“blue jar”.

The Vote [Unanimity]. After all messages have been presented to each of you, each player is called to
vote. You may vote either “red jar” or “blue jar”. Your vote may but need not be related to the ball you have
been shown or to the message you have sent. Only your vote and the group decision will affect your payoffs.
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The group decision has to be unanimous. If all participants in your group (including yourself) vote “red
jar”, then the group decision is “red jar”. If all vote “blue jar”, then the group decision is “blue jar”. Otherwise,
a second voting round starts. If all three votes are unanimous now, the decision is made. If it is again not
unanimous, a third and final voting round starts. If all three votes are unanimous now, the decision is made.
Otherwise, the group decision, and all individual votes, are set on red jar.

Payoff. Your payoff in each round is the sum of two components. First, if your group decision is equal to
the correct jar, each member of your group earns 40 Talers. If your group decision is incorrect, each member
of your group earns 0 Talers from the group decision. Second, if your individual vote is “red jar”, you earn
an additional 10 Talers. If your individual vote is “blue jar”, your additional payoff is 0 Talers. Depending on
which jar had been selected by the computer, the following tables summarize the possible outcomes.

The computer selected the blue jar
The other two votes are

Your vote Blue + Blue Blue + Red Red + Blue Red + Red
Blue jar 40 40 40 0
Red jar 50 10 10 10

The computer selected the red jar
The other two votes are

Your vote Blue + Blue Blue + Red Red + Blue Red + Red
Blue jar 0 0 0 40
Red jar 10 50 50 50

Information at the end of each Round. Once you and all the other participants have voted, the round
will be over. At the end of each round, you will receive the following information about the round: messages
and votes of all players, the group decision, the jar selected by the computer, your payoff.

Final Earnings. At the end of the experiment, the Talers earned in all 50 rounds are added up and converted
to Euro. Each Taler is converted to 1 Cent. Thus, 100 Talers are converted to 1 Euro. Additionally, you will
earn a show-up fee of 5.00 Euros. Everyone will be paid in private and you are under no obligation to tell
others how much you earned.

Questionnaire (computerized)

1. What is the probability that the computer selects the red jar?

□ 25% □ 50% □ 75%

2. The computer shows you exactly one ball drawn randomly from the selected jar. If the selected jar is
blue, what is the probability that you are shown a red ball?

□ 40% □ 60% □ 80%

3. Right or wrong?
After having been shown the ball, you can send a message: red ball or blue ball. This has message has
to be equal to the ball you have been shown.

4. Right or wrong?
The messages of all three group members are shown to all group members. Subsequently, you can vote,
and the vote must be different from the message you have sent.

5. If the selected jar is red, you voted “blue jar” and the other two players voted “red jar”, what is your
payoff?
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□ 10 Taler □ 40 Taler □ 50 Taler

6. If the selected jar is blue, you voted “red jar”, one other player voted “red jar”, the third one voted “blue
jar”, what is your payoff?

□ 10 Taler □ 40 Taler □ 50 Taler

7. Right or wrong?
The computer will assign all participants randomly to groups, and in each round, a new random assign-
ment will be made.
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Figure 2: Composite screenshot (in German)

Note: This screenshot simultaneously displays all queries and all pieces of information that were available at some point
during the experiment. All items are in the positions they had been displayed, and they were displayed in the following
order.

1. Show drawn ball (entire game)
Shows the two jars (“Blaue Urne” and “Rote Urne” means “blue jar” and “red jar”) and the ball drawn (“Ihre Kugel” means “Your
ball”). These items remain on the screen for the entire game.

2. After five seconds, query for message (no time limit)
Now the box “Nachricht – Blaue Kugel oder Rote Kugel” (Mesage – Blue Ball or Red Ball) appears with the two balls underneath
to choose from. Subjects submit the message by clicking “OK”, there is no time limit. Once the message is submitted, the box
disappears.

3. When all messages are submitted, they are displayed (for rest of game)
Now the box “Nachrichten” (Messages) on the left appears, with the messages of all three subjects. “Sie” means “You”, “Teiln.
2” means “Co-Participant 2”, and “Teiln. 3” means “Co-Participant 3”. These items remain on the screen for the rest of the game.

4. After five seconds, query for vote (no time limit)
Now the box “Abstimmung – Blaue Urne oder Rote Urne” (Vote – Blue Jar or Red Jar) appears with the two rectangular jars
underneath to choose from. Subjects submit their vote by clicking “OK”, there is no time limit. Once the vote is submitted, the
box disappears.

5. When all votes are submitted, they are displayed (for rest of game)
Now the box “Abstimmung” (Votes) on the left appears, with the votes of all three subjects. “Sie” means “You”, “Teiln. 2”
means “Co-Participant 2”, and “Teiln. 3” means “Co-Participant 3”. These items remain on the screen for the rest of the game (in
Majority or in Unanimity if decision unanimous or the third vote was taken) or disappear (in Unanimity otherwise, where voting
stage is restarted).

6. After five seconds, the decision taken by the committee (“Mehrheit” means majority), the true jar chosen by Nature (“Richtige
Urne” means true jar) and the payoff information is displayed. “Auszahlung” means payoff, “Mehrheit richtig” means “majority
correct”, “Ihre Stimme: Rote Urne?” means “Your Vote: Red Jar?”, and “Taler insgesamt” means “Taler in total” (where “Taler” is
our experimental currency unit). This information remains on the screen for 10 seconds. Note that voting “Red” in this screenshot
is associated with minus 15 Taler for testing purposes, the payoffs used in the experiment were plus 10 or plus 15, as described in
the paper.

55


