

Fair (P)redistribution.*

Krishna Srinivasan[†] Justin Valasek and Weijia Wang^{‡§}

Regular Submission
January 29, 2026

Abstract

To address rising income inequality, governments typically rely on two levers: predistribution policies—such as minimum-wage laws, caps on high salaries within firms—that determine incomes before they are earned, and redistribution policies—such as progressive taxes and transfers—that determine incomes after they are earned. We study fairness perceptions of predistribution and redistribution using experiments with the general population of the U.S. and Sweden (N=2528), focusing on whether the income decision is made before or after income is earned. We find that timing matters: spectators in both countries implement lower inequality under predistribution than redistribution. Furthermore, the magnitude of this predistribution–redistribution gap in implemented inequality is similar across the two countries. At the same time, Swedish spectators implement lower inequality than U.S. spectators in both predistribution and redistribution, with the latter being consistent with earlier results. Overall, our results suggest that the choice between predistribution and redistribution can influence public support for reducing inequality.

JEL: C91, D63, J16

Keywords: Inequality, Fairness, Institutions, Experiment

*The study is funded by FAIR, the Centre for Experimental Research on Fairness, Inequality and Rationality through grants from Telenor and the NHH Smaforsk Fund. The project is approved by the Institutional Review Board at the Norwegian School of Economics and is preregistered at the AEA Registry (AEARCTR-0012985 “Fair Institutions.”)

[†]UniDistance Suisse: krishna.srinivasan@unidistance.ch

[‡]Department of Economics, NHH Norwegian School of Economics, Helleveien 30, 5045 Bergen, Norway.
Contact e-mails: justin.valasek@nhh.no and weijia.wang@nhh.no.

[§]We are grateful to participants in the 2024 ESA Europe Conference, 2025 Ludwig Erhard ifo Conference on Institutional Economics, seminar participants at OsloMet and the NHH Micro Seminar, Alexander Cappelen, Ranveig Falch, Heidi Thyssen and Bertil Tungodden for helpful comments and suggestions.

1 Introduction

Income inequality has increased substantially in many countries over recent decades, with a large share of this rise driven by labor incomes Chancel et al. (2022). To address such disparities, governments typically rely on two broad types of policy instruments: predistribution policies—such as minimum-wage laws, caps on high salaries within firms—that determine incomes before they are earned, and redistribution policies—such as progressive taxes and transfers—that determine incomes after they are earned. Differences in the relative use of these two instruments play an important role in explaining the cross-country differences in inequality. For example, higher levels of inequality in the U.S. compared to Sweden can be explained by differences in predistribution rather than redistribution Blanchet et al. (2022); Bozio et al. (2024). They can also influence public support, since voters may have preferences over instruments to reduce inequality Kuziemko et al. (2023) and their level of support for reducing inequality may depend on which instruments are used.

In this paper, we compare fairness perceptions of inequality reduction through predistribution and redistribution—focusing on whether incomes are determined before or after the income is earned—and examine whether preferences over the level of inequality implemented depend on the instrument used. *Ceteris paribus*, if individuals care only about final inequality levels, then the choice of instrument should be irrelevant. However, prior work shows that individuals’ acceptance of inequality and redistribution depends on fairness considerations (Almås et al., 2020). If the perceived fairness of reducing inequality differs between predistribution and redistribution, then the choice of instrument itself may influence support for inequality reduction. Differences in fairness perceptions may therefore help explain cross-country variation in public support for inequality-reducing policies, particularly in countries that rely on different policy instruments.

To study fairness perceptions of predistribution and redistribution we implement large-scale experiments with the general population of the U.S. and Sweden ($N = 2528$). We utilize a spectator design, closely following (Almås et al., 2020), to elicit spectator’s willingness to adjust unequal earnings distributions. In the experiment, participants in the role of *workers* earn initial incomes based on a real-effort task, while participants in the role of *spectators* determine the final incomes of a matched pair of workers. We include treatments that capture

a key difference between predistribution and redistribution policies—whether incomes are determined before they are earned (predistribution) or after they are earned (redistribution). Our controlled design allows us to isolate spectators’ fairness concerns related to the timing of the determination of final earnings, unconfounded by other concerns, such as efficiency.

In addition, we elicit spectators’ preferred framing for determining incomes—a “meta-choice” between predistribution and redistribution within the experimental setting—as well as their fairness assessments of real-world predistribution and redistribution policies. We find substantial heterogeneity in preferences over predistribution and redistribution in both the experimental setting and the real world. Moreover, preferences across the experimental and real world settings are related, providing suggestive evidence that experimental preferences over instruments correlate with fairness perceptions of real-world policies. Spectators who strictly prefer choosing incomes before they are earned in the experiment are roughly three times more likely to judge real-world predistribution as more fair than redistribution, while spectators who strictly prefer redistribution are about 1.5 times more likely to judge real-world redistribution as more fair.

Importantly, we also find that timing matters for the level of inequality implemented by spectators: in both countries, spectators implement lower inequality under Predistribution than under Redistribution. The magnitude of this predistribution–redistribution gap is similar in the U.S. and Sweden. At the same time, Swedish spectators implement lower inequality than U.S. spectators under both frames. The magnitude of the predistribution–redistribution gap in implemented inequality corresponds to roughly half of U.S.–Sweden gap in implemented inequality under redistribution. These results hold across various demographic subgroups and in treatments where workers’ initial incomes are determined by luck instead of workers’ productivity.

Additionally, within each country, meta-choices broadly align with (p)redistribution decisions: spectators who prefer the predistribution frame tend to implement more equal outcomes under predistribution. At the same time, a sizable share reports being indifferent between frames, suggesting that many hold relatively weak preferences over frames. Across countries, Swedish spectators express a stronger preference for predistribution than U.S. spectators, consistent with their lower implemented inequality under predistribution; how-

ever, despite being less likely than Americans to prefer the Redistribution frame, Swedes implement lower inequality than Americans even under redistribution. These patterns suggest that preferences over policy instruments and preferences over distributive outcomes are related but distinct.

To uncover spectators' underlying concerns, we analyze their responses to open-ended answers explaining their (p)redistribution decisions and their meta-choice. Across countries and treatments, spectators' (p)redistribution decisions are primarily justified by a trade-off between fairness and equality on the one hand and rewarding productivity on the other, with smaller roles for rule-following, ensuring minimum compensation, and concerns about uncertainty or incomplete information. In the U.S., the framing shift from redistribution to predistribution is accompanied by a marked shift in reasoning toward fairness and equal pay and away from productivity-based justifications, consistent with the more egalitarian choices under predistribution. In Sweden, by contrast, the relative weight placed on fairness versus productivity is similar across treatments, suggesting less treatment-driven change in underlying reasoning. Explanations for meta-choices retain the central fairness-versus-merit structure but place greater emphasis on procedural considerations, especially transparency, predictability, and expectations set before work, highlighting that preferences over policy instruments reflect not only distributive outcomes but also how rules are chosen and communicated.

Finally, we examine how spectators' (p)redistribution decisions in the experiment relate to their support for real-world government (p)redistribution policies. In both countries, spectators express stronger support for predistribution policies than for redistribution policies; these aggregate patterns mirror (p)redistribution decisions. Across countries, U.S. spectators have slightly stronger support for redistribution policies relative to Swedish spectators, while Swedish spectators have much stronger support for predistribution policies. These aggregate patterns align with the cross-country differences in meta-choices and with cross-country differences in the relative prominence of redistribution and predistribution policies documented in Blanchet et al. (2022) and Mogstad et al. (2025). At the individual level, spectators' (p)redistribution decisions and meta-choices are correlated with their support for government (p)redistribution policies. Taken together, these results suggest that spectators' preferences over policy instruments and their preferred level of inequality reduction under

each instrument is at least partly guided by fairness considerations.

Our paper contributes to several strands of the literature. First, we provide novel evidence on citizens' fairness perceptions of two important means of determining incomes in society: redistribution and predistribution. Prior work has largely focused on fairness perceptions of redistribution (e.g., Almås et al., 2025, 2020; Harris and Sterba, 2025; Konow, 2000; Andre, 2024), and demand for redistribution (e.g., Kuziemko et al., 2015; Drenik and Perez-Truglia, 2018; Capozza and Srinivasan, 2024). A relatively new strand of literature has focused on support for government predistribution policies, such as minimum wage laws, retraining programs, and salary caps on CEOs (Yusof and Sartor, 2025; Ferreira et al., 2024; Kuziemko et al., 2023)

2 Conceptual Framework

In our experiment, the only treatment variation is the timing of the spectator's choice of final incomes relative to when the income is earned, and the context of the (p)redistribution decision. Therefore, according to traditional models of distributional preferences, such as inequality aversion, we should not expect to see treatment differences in the spectators' choices of final incomes.

However, we expect that the timing of the choice and the context of the (p)redistribution decision may influence spectators' choices if their *preferences for fairness* systematically vary between the choice environments. Accordingly, we model spectators' preferences according to the framework presented in Almås et al. (2020) and Cappelen et al. (2013).

That is, spectators' preferences are represented by the following utility function:

$$V(x_i, y_i, m(j)_i) = x_i - \beta(y_i - m_i(j))^2, \quad (1)$$

where x_i is the spectator's income, y_i is the share of income the spectator chooses to give to the most productive worker, and $m_i(j)$ is what income share the spectator considers to be fair in treatment j .

Since the spectator's income, x_i , is not impacted by their decision of y_i , it follows that the spectator will simply choose the share of income to give to the most productive worker that

they consider to be fair in treatment j ($y_i = m_i(j)$). It follows that any average differences we find in our experiment between two treatments j and j' —i.e. treatment effects—will reflect the differences in fairness preferences between the two treatments ($|m(j), m(j')|$).

3 Experimental Design

There are two types of participants in the experiment: *workers* and *spectators*. Our focus is on spectators’ decisions; accordingly, details on the workers’ task and recruitment are relegated to Appendix Section A. Complete instructions are provided in Appendix Section G. We pre-registered the data collection, sample restrictions, analyses, and hypotheses; minor deviations and exploratory analyses are described in Appendix Section B.

3.1 (P)redistribution Decisions

To study fairness perceptions regarding predistribution and redistribution, we use a spectator design following Almås et al. (2020). Each spectator is anonymously matched to a distinct pair of workers. The workers complete a real-effort task, and each receives a \$2 participation payment and an additional payment for completing the task. Workers’ initial additional earnings are determined by their relative productivity, while their final additional earnings are determined by the matched spectator. This scenario is analogous to real-world settings where individuals accrue initial labor earnings, and policy can influence their final incomes. The spectators’ decisions are incentive compatible: one in every twenty randomly selected spectators has their decisions implemented.

Treatments: Spectators are randomized into one of three treatments. The first two are designed to isolate a key difference between predistribution and redistribution policies: whether incomes are determined *before* or *after* they are earned. The third treatment also involves a predistribution decision but changes the policy instrument by explicitly framing the decision as a choice over a base payment and a top-up for the most productive worker. In the *Redistribution* treatment, which follows Almås et al. (2020), spectators determine workers’ incomes *after* the workers complete the assignment and after learning which worker was most productive. Initially, the most productive worker earns \$6 and the least productive worker

earns \$0, so initial earnings are (6, 0). Spectators choose whether to maintain this initial allocation or change it to (5, 1), (4, 2), or (3, 3). In the *Predistribution* treatment, the choice menu is identical, but spectators make their decision *before* the workers complete the assignment and without knowing which worker will be most productive. In the *Predistribution+Context* treatment, the timing of the decision is the same as in Predistribution, but the policy instrument and framing differ: spectators allocate the \$6 in additional earnings into a *base* payment for each worker and a *top-up* for the more productive worker, choosing among (0, 6), (1, 4), (2, 2), or (3, 0), which map directly onto the four allocations above in terms of workers' final earnings. In all treatments, spectators are informed that workers learn their final earnings only *after* completing the assignment, so their decisions cannot affect effort. Together, these treatments allow us to separately identify the effects of timing (before versus after incomes are earned) and framing (direct redistribution versus base-and-top-up predistribution) on spectators' allocation choices.

3.2 Additional questions

Open-Ended Explanation: After making their main (p)redistribution decisions, spectators are asked to explain the reasoning behind their choice in an open-ended question.

Meta-Choice of Frame: In addition to eliciting spectators' (p)redistribution decisions, which hold fixed whether incomes are determined in a Predistribution or a Redistribution frame, we also elicit their preferred frame for determining incomes, i.e., a "meta-choice" between Redistribution and Predistribution. After reminding spectators of the frame they were in, we asked whether they preferred determining workers' incomes after they earn these incomes (Redistribution frame), before they earn these incomes (Predistribution frame), or whether they were indifferent between the two frames. Spectators are also asked to explain the reasoning behind this choice in an open-ended question.

Support for Policies: To study the link between spectators' (p)redistribution decisions and their policy views, we asked how strongly they support real-world government policies that determine individuals' incomes after they are earned (redistribution) and policies that determine incomes before they are earned (predistribution). Example redistribution policies

included cash transfers to low-income earners and taxes on high-income earners; example predistribution policies included minimum-wage laws for very low-wage workers and salary-cap rules that limit very high salaries within a company. The order of presentation was treatment-dependent: in the *Redistribution* treatment, redistribution was introduced first, whereas in the *Predistribution* treatments, predistribution was introduced first.

Background Questions: We collect spectators' background information, including gender, age, education, income, and political leaning.

3.3 Recruitment and Sample

Recruitment: Spectators were recruited through the survey provider *Faktum AS* in two countries, the U.S. and Sweden. Our survey provider included demographic quotas in recruitment to ensure that the sample in each country is nationally representative in terms of age, gender, and region of residence. The experiment included one attention check; participants who failed this check were excluded according to our pre-registered protocol. In a between-subjects design, we randomized 40% of participants into each of two main treatments (*Redistribution* and *Predistribution*), with the remaining 20% assigned to an additional treatment (*Predistribution+Context*). Data collection started on 31 October 2025 and lasted for about two weeks. The median completion time was 3.3 minutes in the U.S. study and 3.8 minutes in the Swedish study. The final sample consists of 1,255 spectators in the U.S. and 1,273 spectators in Sweden.¹

Summary Statistics and Balancedness: The sample characteristics of the U.S. and Swedish samples are very similar (see Appendix Table A1). Furthermore, the sample characteristics are broadly balanced across treatments in both countries (see Appendix Table A2).

¹We initially received 1,568 responses in the U.S. and 1,775 responses in Sweden. We dropped participants with duplicate responses, failing the attention check, or not completing the study.

4 Results

4.1 (P)redistribution Decisions

Treatment Effects: We begin by examining spectators' (p)redistribution decisions and the resulting inequality. Following Almås et al. (2020), inequality is measured by the Gini index of the two workers' final earnings, defined as the absolute difference between the two workers' final incomes divided by their total final income. The index ranges from 0 (perfect equality) to 1 (full inequality), with higher values indicating greater implemented inequality. Figure 1 presents the spectators' implemented Gini in Treatments Predistribution and Redistribution, separately by country; Table 1 reports the corresponding regression estimates. In the U.S. sample, the average Gini is 0.56 in the Redistribution treatment and falls to 0.49 in the Predistribution treatment; the 0.07-point difference is statistically significant (Column 1). In Sweden, the mean Gini declines from 0.44 in the Redistribution treatment to 0.39 in the Predistribution treatment, with the 0.05-point difference being statistically significant (Column 2). In both countries, predistribution yields more equal outcomes than redistribution, contrary to our pre-registered hypothesis of no treatment effect.

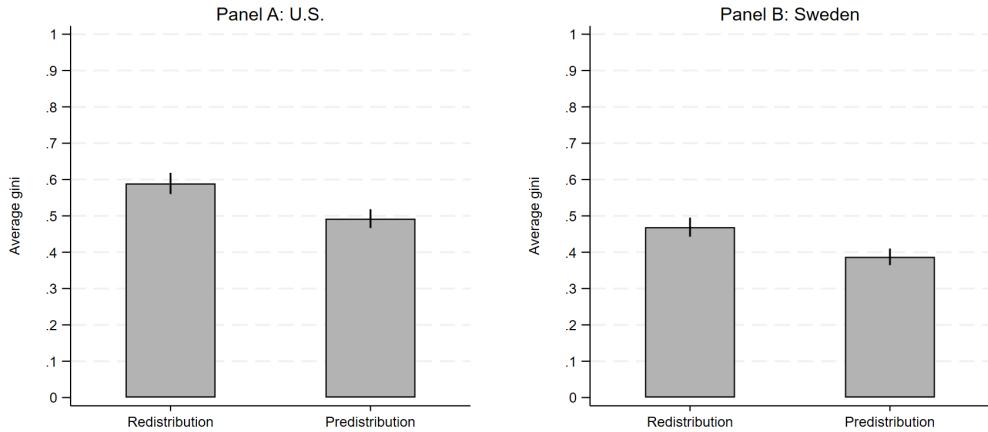


Figure 1: Spectators' Implemented Inequality by Treatment and Country

Notes: The figure presents the spectators' average implemented Gini by treatment in the U.S. sample (Panel A) and Swedish sample (Panel B). Vertical bars show their 95% confidence intervals.

Cross-Country Differences: In a pooled regression that allows the treatment effect to vary by country (Table 1, Column 3), the predistribution–redistribution difference does not differ significantly between the U.S. and Sweden, consistent with our pre-registered hypoth-

esis. Although the treatment effect is similar across countries, there are pronounced level differences. Swedish spectators implement lower inequality than U.S. spectators under both redistribution (0.12-point difference) and predistribution (10-point difference), and these differences are statistically significant.² The U.S.–Sweden difference in implemented inequality under redistribution is consistent with the U.S.–Norway difference observed in the literature (Almås et al., 2020, 2025).³

Table 1: Average Implemented Inequality (Gini) Across Treatments and Countries

	(1)	(2)	(3)	(4)	(5)
Predistribution	-0.097*** (0.024)	-0.082*** (0.021)	-0.069*** (0.021)	-0.097*** (0.024)	-0.082*** (0.021)
Predistribution + Context	-0.083*** (0.026)	-0.102*** (0.023)		-0.083*** (0.026)	-0.102*** (0.023)
Sweden			-0.127*** (0.018)		
Predistribution x Sweden			0.021 (0.028)		
Constant	0.589*** (0.018)	0.469*** (0.016)	0.562*** (0.013)	0.589*** (0.018)	0.469*** (0.016)
Observations	1255	1273	2528	1255	1273
Controls?	No	No	No	Yes	Yes
Country	U.S.	Sweden	Pooled	U.S.	Sweden

Notes: The table reports coefficient estimates from linear regressions. The dependent variable is the spectators' implemented Gini. *Predistribution* and *Predistribution + Context* are treatment indicators (Redistribution is the omitted category). *Sweden* is an indicator for being in the Swedish sample (the U.S. sample is the omitted category). HC3 standard errors in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

Robustness: The finding that Predistribution generates lower inequality than Redistribution is robust to alternative specifications and contexts. First, controlling for background characteristics yields nearly identical estimates (Table 1, Columns (4) and (5)). Second, we also find lower implemented inequality in the Predistribution + context treatment relative to the Redistribution treatment (Table 1, Columns (1) and (2)), where the former reframes the policy as a minimum payment to the low productivity worker and a top-up

²The *Sweden* coefficient is statistically significant in Column (3), and the linear combination of the Predistribution coefficient and its interaction with *Sweden* in Column (3) is also statistically significant.

³For the U.S., the average implemented Gini under Redistribution in our data is 0.56, which is identical to the average Gini reported for the merit treatment in Almås et al. (2020). For Scandinavia, the corresponding average in our data is 0.44 in Sweden, which is slightly higher than the 0.39 in Norway in Almås et al. (2020).

to the high-productivity worker.⁴ Third, we also find suggestive evidence for a treatment effect with US subjects in treatments where income differences are generated due to luck; Appendix Section 3 provides the supporting details and results, based on an additional study ($N=2,631$).

Heterogeneity by Demographics: The predistribution–redistribution gap is larger among liberals than among conservatives in both countries, but it is stable across gender, age, income, and education (Appendix Tables A3 and A4). The null result for education contrasts with our pre-registered hypothesis that lower-educated individuals would exhibit a larger gap, suggesting that fairness perceptions are unlikely to explain the education gradient in support for predistribution and redistribution policies documented in Kuziemko et al. (2023).

Summary: Predistribution yields more equal outcomes than Redistribution in both the U.S. and Sweden. The magnitude of this gap corresponds to roughly 42%–58% of the cross-country difference in implemented inequality under Redistribution between the U.S. and Sweden, a difference well documented in prior work (Almås et al., 2020). The predistribution–redistribution gap is observed across various demographic groups and is robust to alternative specifications and contexts. These results suggest that the choice of redistribution instruments impacts the overall level of support for redistribution in both the US and Sweden.

4.2 Meta-Choice of Frame

While the previous section focused on spectators’ (p)redistribution decisions within a given frame, we now turn to their meta-choices, i.e., their preferred frame for determining workers’ incomes. Table 2 presents the distribution of these meta-choices. In both the U.S. and Sweden, a larger share of spectators prefer the Predistribution frame to the Redistribution frame. At the same time, the sizable share of spectators who report being indifferent indicates that many spectators hold relatively weak preferences over the choice of frame. We also observe systematic cross-country differences in meta-choices: The predistribution–

⁴In the U.S. sample, a test of equality between the Predistribution and Predistribution+Context coefficients cannot be rejected ($F = 0.34$, $p = 0.56$). In the Swedish sample, the corresponding test is likewise statistically insignificant ($F = 0.87$, $p = 0.35$).

redistribution preference gap is smaller in the U.S. than in Sweden, driven by a strong preference for the Predistribution frame among Swedes relative to Americans, and a weak preference for the Redistribution frame among Americans relative to Swedes.

Table 2: Meta-Choices over Frames

	Frame		
	Predistribution	Indifferent	Redistribution
U.S. sample	37%	29%	34%
Swedish sample	43%	29%	28%
Redistribution treatment	39%	28%	33%
Predistribution treatment	40%	31%	29%

Notes: The table presents the distribution of responses to the meta-choices. The first two rows present the distribution in the U.S. and Swedish samples, respectively, pooling across the Redistribution and Predistribution treatments. The last two rows present the distribution in Treatment Redistribution and Predistribution treatments, respectively, pooling over the U.S. and Swedish samples.

One concern with meta-choices is that spectators may prefer the frame that they previously encountered, either due to misperceptions about the alternative frame or to status-quo bias. However, there is little evidence to support these explanations: pooling the U.S. and Swedish samples, the distribution of meta-choices is very similar across treatments.

Comparison to Relative Fairness Real-World Instruments: We construct an index of relative policy support, defined as support for predistribution minus support for redistribution (positive values indicate greater support for predistribution). In Figure 2, we compare the relative policy support by each stated meta-choice.

As seen in the Figure 2, spectators who prefer the Predistribution frame exhibit higher relative support for predistribution policies than those who prefer the Redistribution frame, and this difference is statistically significant; spectators who report being indifferent express, on average, no clear preference between predistribution and redistribution policies, with the modal response being an equal fairness assessment.⁵

⁵The difference in mean index values between spectators who prefer Predistribution and those who prefer Redistribution is 1.35 (t -test, $p < 0.001$). This difference corresponds to approximately 0.9 standard deviations of the index. The corresponding differences are 1.11 in the U.S. (t -test, $p < 0.001$) and 1.52 in Sweden (t -test, $p < 0.001$). Spectators who report being indifferent have an average index value of 0.10, which is not statistically different from zero (t -test, $p = 0.11$).

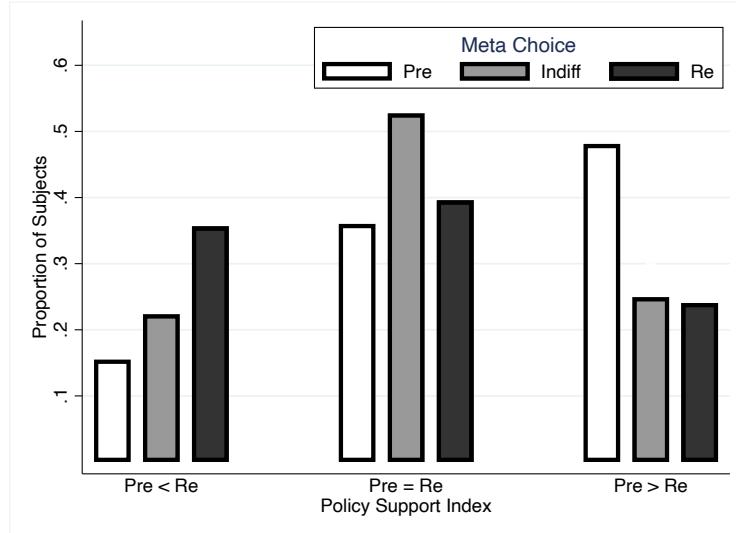


Figure 2: Comparison meta-choice to fairness real-world instruments

Comparison to (P)redistribution Decisions: Within each country, meta-choices mirror (p)redistribution decisions: spectators not only implement lower inequality in the Pre-distribution frame than in the Redistribution frame, but also tend to prefer that incomes be determined in the Predistribution frame. Across countries, however, meta choices mirror predistribution decisions but not redistribution decisions. In particular, Swedish spectators express a stronger preference for Predistribution than U.S. spectators and implement lower inequality in the Predistribution frame. However, although Americans express a relatively stronger preference for the Redistribution frame, Swedish spectators nevertheless implement lower inequality than Americans in the Redistribution frame. These results are consistent with the view that, in Sweden, stronger preferences for reducing inequality dampen the extent to which implemented inequality depends on the choice of frame.

4.3 Open-Ended Explanations

To uncover the underlying mechanisms, we analyze the open-ended responses provided by spectators for their (p)redistribution decisions and their meta-choices using a large language model (LLM), closely following the procedure of Bartling and Srinivasan (2025). Appendix Section E presents the details and model outputs. The median number of words per spectator for the explanation of the (p)redistribution decisions is 10 in the U.S. and 8 in Sweden; for the explanation of the meta-choices, the corresponding numbers are 6 in the U.S. and 9 in Sweden.

Reasons for (p)redistribution decisions: Across all treatment and country conditions, two dominant themes consistently appear in spectators' open-ended explanations: fairness-based reasoning supporting equal or near-equal compensation, and merit-based reasoning supporting higher pay for the more productive worker. These two considerations account for the majority of responses in every subgroup. Smaller but recurrent themes include adherence to the original agreement or rules, ensuring that both workers receive at least some compensation for participation, concerns about uncertainty or incomplete information, and—to a lesser extent—motivation- and incentive-based arguments. In the U.S. sample, spectators in the Predistribution treatment place substantially greater weight on fairness and equal pay (47.34%) than those in the Redistribution treatment (28.4%). By contrast, U.S. spectators in the Redistribution treatment put relatively more weight on rewarding productivity (25.3% vs. 16.67%), consistent with the fact that the Redistribution condition explicitly presents a productivity-based initial allocation. These patterns align with the more unequal choices implemented in the Redistribution treatment. In the Swedish sample, fairness-based and productivity-based considerations dominate both treatments at similar magnitudes (42% fairness and 19–22% productivity), and the distributions of smaller topics—such as concerns about information, compensation for effort, motivation, or adherence to the original terms—do not differ meaningfully across treatments, indicating no strong treatment-driven shifts in underlying reasoning in Sweden.

Reasons for meta-choices: Across both countries, meta-choices reveal a similar structure of reasoning to the (p)redistribution decisions, but with a clearer emphasis on procedural considerations. In the U.S., meta-choices prominently feature performance-based compensation (28.8 percent) and fairness and equality (26.0 percent), mirroring the two dominant themes in the (p)redistribution decisions. However, meta-choices additionally introduce substantial weight on upfront transparency and expectations (18.0 percent), a consideration that appears only weakly in the (p)redistribution context. Smaller themes—such as indifference, uncertainty, needs for more information, motivational considerations, and concerns about bias—reflect procedural preferences rather than distributive principles, marking a shift from the substantive fairness-versus-merit reasoning seen in the redistribution decisions. In Sweden, meta-choice explanations likewise combine fairness and equality (21.23 percent) and

performance- or incentive-based considerations (13.95 percent) with a strong emphasis on clarity, transparency, and predictability before work (25.76 percent), which again is largely absent from the (p)redistribution decisions. Overall, fairness and merit remain central across both decision types, but meta-choices introduce procedural and information-based concerns that play a far smaller role in participants' redistribution reasoning.

4.4 Policy Preferences

Finally, we study the link between spectators' (p)redistribution decision in the experiment and their support for (p)redistribution policies, both at the aggregate and individual levels. Support is measured on a 7-point scale from -3 (*Strongly oppose*) to $+3$ (*Strongly support*), with values above 0 defined as supporting the policies.

Aggregate Level: Figure 3 presents the average share of spectators supporting government (p)redistribution policies, based on the first policy they encounter. In both countries, the share of spectators supporting predistribution policies is higher than the share supporting redistribution policies, consistent with the aggregate patterns observed in spectators' predistribution decisions and meta-choices in the experiment.⁶ Turning to cross-country differences in policy preferences, we find that predistribution–redistribution support gap is statistically significantly larger in Sweden than in the U.S. (Appendix Table A5). Decomposing this gap suggests that Swedes exhibit much higher support for predistribution policies (20% in the U.S. vs. 32% in Sweden), while Americans exhibit slightly higher support for redistribution policies (16% in the U.S. vs. 12% in Sweden). These cross-country differences are consistent with those observed in meta-choices.

The cross-country differences in policy preferences are also aligned with evidence showing slightly higher levels of redistribution in the U.S. relative to Sweden and much higher levels of predistribution in Sweden relative to the U.S. (Blanchet et al., 2022). These results provide suggestive evidence that the cross-country differences in the choice of policy instruments are due to differences in support for policy instruments.

⁶We find very similar patterns when using a continuous measure of policy support (Appendix Table A5). When we exploit within-spectator variation, based on both policies that spectators encounter, we observe a smaller predistribution–redistribution gap in support in each country (Appendix Table A5).

Individual-Level: Pooling across countries, we find a small negative but marginally significant correlation between implemented Gini under redistribution and support for redistribution policies ($\rho = -0.052, p = 0.098$), and a modest negative correlation between implemented Gini under predistribution and support for predistribution policies ($\rho = -0.126, p < 0.001$).⁷ However, these correlations should be interpreted with caution, as they may be attenuated toward zero in the presence of heterogeneity in fairness types and beliefs about the sources of income inequality (Harrs and Sterba, 2025).⁸

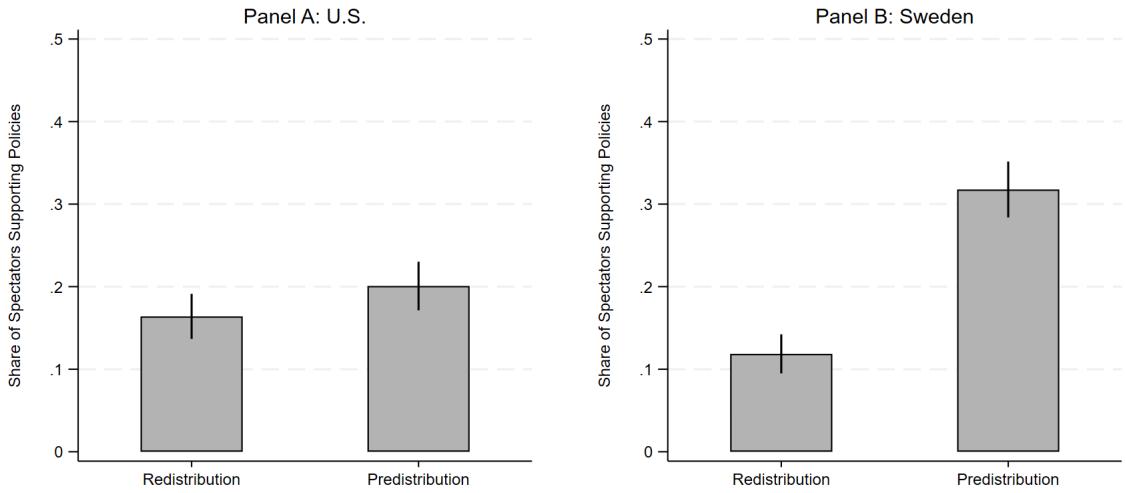


Figure 3: Average Share Supporting (P)redistribution Policies

Notes: The figure presents the average share of spectators supporting the (p)redistribution policies separately for those in the U.S. (left) and Sweden (right). Support for redistribution policies is computed using the sample in the Redistribution treatment, while support for predistribution policies is computed using the sample in the Predistribution treatment. Support ranges on a 7-point scale from -3 (*Strong oppose*) to -3 (*Strong support*), with values above 0 defined as supporting the policies. Vertical bars represent the 95% confidence intervals around the means.

Summary: The aggregate patterns in spectators' support for government (p)redistribution policies mirror their (p)redistribution decisions and meta-choices in the experiments. At the individual level, spectators' (p)redistribution decisions and meta-choices are correlated with their support for government (p)redistribution policies. Taken together, these results suggest that spectators' preferences over policy instruments are at least partly guided by fairness considerations.

⁷The correlation is near zero in the U.S. for predistribution ($\rho = -0.004, p = 0.936$) but somewhat stronger in Sweden for predistribution ($\rho = -0.224, p < 0.001$). For redistribution, correlations are weak and statistically insignificant in both the U.S. ($\rho = -0.078, p = 0.083$) and Sweden ($\rho = -0.042, p = 0.342$).

⁸In Harrs and Sterba (2025), regressing support for redistribution (standardized index) on implemented Gini yields a coefficient of -0.38 . In our data, the analogous coefficients are -0.14 for redistribution and -0.37 for predistribution.

5 Conclusion

Taken together, our results show that timing and framing shape inequality choices: in both the U.S. and Sweden, spectators implement lower inequality under predistribution than under redistribution, while Swedish spectators implement lower inequality than U.S. spectators in both frames. Meta-choices broadly align with these within-country patterns, as spectators tend to prefer the predistribution frame, though cross-country differences in stated frame preferences do not fully map into cross-country differences in implemented inequality. Finally, experimental (p)redistribution behavior is only weakly related to support for corresponding government policies, whereas meta-choices over frames are strongly associated with relative support for predistribution versus redistribution policies, consistent with the view that preferences over policy instruments are an important component of distributive attitudes.

Taken together, these results indicate that while treatment effects are modest in the U.S., Swedish spectators show a clear preference for *ex ante* equality. The education gradient in the U.S. and the mapping between experimental and policy preferences reinforce the external validity of the fairness frames. The cross-country divergence—larger in redistribution than predistribution—suggests that timing matters less than cultural norms about fairness and merit. Meta-choice responses highlight that individuals’ preferred frames reflect consistent moral reasoning about when fairness should apply: before or after outcomes unfold.

References

Almås, I., Cappelen, A. W., Sørensen, E. Ø., and Tungodden, B. (2025). Fairness across the world. *NHH Dept. of Economics Discussion Paper*, (06).

Almås, I., Cappelen, A. W., and Tungodden, B. (2020). Cutthroat capitalism versus cuddly socialism: Are americans more meritocratic and efficiency-seeking than scandinavians? *Journal of Political Economy*, 128(5):1753–1788.

Andre, P. (2024). Shallow meritocracy. *Review of Economic Studies*, 89(6):2958–2991.

Bartling, B. and Srinivasan, K. (2025). Paternalistic interventions: determinants of demand and supply. Technical report, CESifo Working Paper.

Blanchet, T., Chancel, L., and Gethin, A. (2022). Why is europe more equal than the united states? *American Economic Journal: Applied Economics*, 14(4):480–518.

Bozio, A., Garbinti, B., Goupille-Lebret, J., Guillot, M., and Piketty, T. (2024). Predis-
tribution versus redistribution: Evidence from france and the united states. *American Economic Journal: Applied Economics*, 16(2):31–65.

Capozza, F. and Srinivasan, K. (2024). Who should get money? estimating welfare weights in the us. *URPP Equality of Opportunity Discussion Paper Series*, (50).

Cappelen, A., Konow, J., Sørensen, E., and Tungodden, B. (2013). Just luck: An exper-
imental study of risk-taking and fairness. *American Economic Review*, 103(4):1398–1413.

Chancel, L., Piketty, T., Saez, E., and Zucman, G. (2022). *World inequality report 2022*. Harvard University Press.

Drenik, A. and Perez-Truglia, R. (2018). Sympathy for the diligent and the demand for workfare. *Journal of Economic Behavior & Organization*, 153:77–102.

Ferreira, J. V., Savva, F., Ramoglou, S., and Vlassopoulos, M. (2024). "should ceos' salaries be capped?": a survey experiment on limitarian preferences. Working paper.

Harrs, S. and Sterba, M.-B. (2025). Fairness and support for redistribution: The role of preferences and beliefs. Technical report, Working Paper Series.

Konow, J. (2000). Fair shares: Accountability and cognitive dissonance in allocation decisions. *American Economic Review*, 90(4):1072–1091.

Kuziemko, I., Longuet-Marx, N., and Naidu, S. (2023). "compensate the losers?" economic policy and partisan realignment in the us. Technical report, National Bureau of Economic Research.

Kuziemko, I., Norton, M. I., Saez, E., and Stantcheva, S. (2015). How elastic are preferences for redistribution? evidence from randomized survey experiments. *American Economic Review*, 105(4):1478–1508.

Mogstad, M., Salvanes, K. G., and Torsvik, G. (2025). Income equality in the nordic coun-
tries: Myths, facts, and lessons. Working Paper 33444, National Bureau of Economic Research.

Yusof, J. and Sartor, S. (2025). Market luck: Skill-biased inequality and redistributive preferences. Available at SSRN 5390075.

ONLINE APPENDIX

Fair (P)redistribution

Krishna Srinivasan Justin Valasek, and Weijia Wang

Table of Contents

A Recruitment and Design of Workers	2
B Deviations from Pre-Registration	3
C Additional Figures	4
D Additional Tables	5
E Open-Ended Analysis	10
E.1 Procedures	10
E.2 Reasons for (P)redistribution Decisions in Redistribution x U.S.	11
E.3 Reasons for (P)redistribution Decisions in Predistribution x U.S.	11
E.4 Reasons for (P)redistribution Decisions in Redistribution x Sweden	12
E.5 Reasons for (P)redistribution Decisions in Predistribution x Sweden	12
E.6 Reasons for Meta-Choices in the U.S.	13
E.7 Reasons for Meta-Choices in Sweden	13
F Additional Study	15
G Experimental Instructions - Study 1 (Merit)	17
G.1 Additional Questions: Treatment 1 Redistribution	20
G.2 Additional Questions: Treatment 2 Predistribution	22
G.3 Demographics	23
G.4 Consent	24
H Experimental Instructions - Study 2 (Luck)	25

A Recruitment and Design of Workers

Recruitment: The workers in the experiment were recruited from the international online marketplace Amazon Mechanical Turk (mTurk). We posted an assignment, called a Human Intelligence Task (HIT), on the mTurk website. Workers then browse these HITs by title, keywords, reward amount, and so forth, and accept HITs of interest. Workers matched to spectators in the Redistribution treatment were recruited before we recruited the matched spectators; the data collection began on xx September 2025 and lasted approximately x days. Workers matched to spectators in the Predistribution and Predistribution + Context treatments were recruited after we recruited the matched spectators; the data collection began on xx September 2025 and lasted approximately x days. We recruited 66 participants residing in the United States

Design: Workers complete four 30-second assignments, each requiring them to alternatively press two buttons on their keyboard as quickly as possible. Workers received a fixed payment of \$2 USD for participation as well as a bonus payment. Their bonus depends on their productivity and possibly the decision of a matched spectator. Workers were informed of the spectators' decisions only after they completed their task.

In particular, the workers were matched in pairs after all four assignments, with one worker initially assigned an earnings of 6 USD for completing the task while the other was assigned 0 USD. Workers were informed (i) how initial earnings were assigned, but not whether they had been assigned earnings, and (ii) that a third person (the spectator) was informed of the assignment and initial distribution and could redistribute earnings between the two workers, thereby determining final pay. Workers received this payment a few days after the spectator's decision.

Matching:

B Deviations from Pre-Registration

1. We drop 1 participant with duplicate responses; this selection criterion was not pre-registered.
2. Except for the analyses exploring the role of treatments on implemented Gini, all other analyses are exploratory.

C Additional Figures

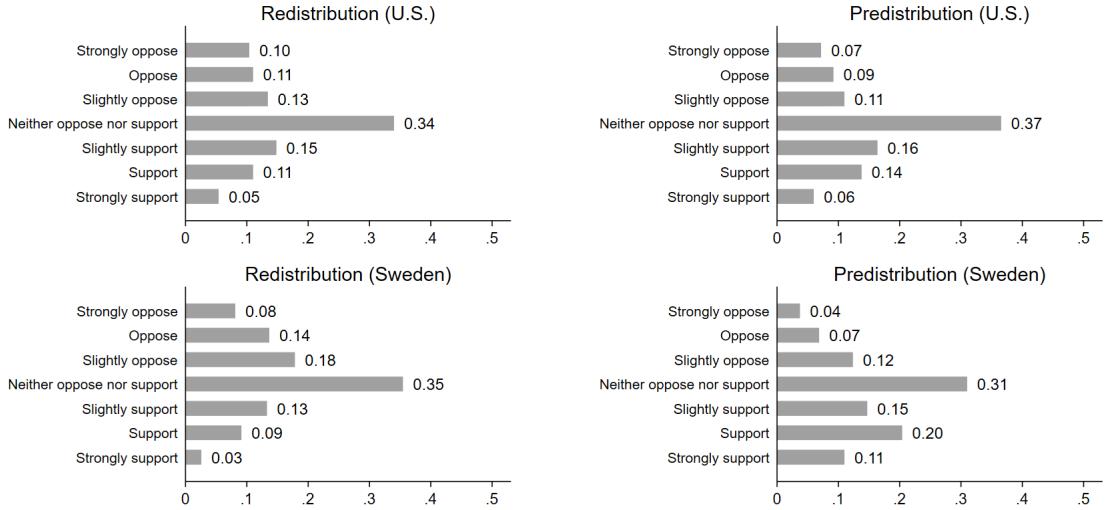


Figure A1: Distribution of Support for Policies

Notes: The figure presents the distribution of support for (p)redistribution policies separately for those in the U.S. (top row) and Sweden (bottom row). Support for redistribution policies is computed using the sample in the Redistribution treatment, while support for predistribution policies is computed using the sample in the Predistribution treatment. Support ranges on a 7-point scale from -3 (*Strong oppose*) to +3 (*Strong support*).

D Additional Tables

Table A1: Summary Statistics

Variable	U.S.	Sweden
Female	0.52	0.52
Income: < 30,000	0.36	0.35
Income: 30–59,999	0.27	0.26
Income: 60–99,999	0.20	0.20
Income: 100–149,999	0.11	0.11
Income: $\geq 150,000$	0.06	0.06
Education: Up to Highschool	0.41	0.40
Education: Some college	0.21	0.21
Education: Bachelor or Associate	0.31	0.31
Education: Masters or above	0.08	0.08
Age: 18–34	0.12	0.12
Age: 25–34	0.21	0.21
Age: 35–44	0.22	0.22
Age: 45–54	0.21	0.21
Age: 55–64	0.21	0.20
Age: 65+	0.02	0.02
Liberal	0.18	0.18

Notes: The table presents the average background characteristics of our sample in the U.S. and Sweden.

Table A2: Randomization Check

Variable	U.S.				Sweden			
	Re	Pre	Pre + Conetxt	pval	Re	Pre	Pre + Context	pval
Male	0.468	0.483	0.480	0.884	0.526	0.519	0.512	0.933
Income: < 30,000	0.374	0.313	0.406	0.024	0.207	0.198	0.191	0.864
Income: 30–59,999	0.246	0.289	0.271	0.300	0.355	0.356	0.327	0.692
Income: 60–99,999	0.204	0.200	0.191	0.919	0.335	0.327	0.367	0.543
Income: 100–149,999	0.116	0.126	0.092	0.384	0.086	0.097	0.096	0.806
Income: ≥ 150,000	0.060	0.072	0.040	0.222	0.018	0.022	0.020	0.909
Education: Up to Highschool	0.390	0.419	0.409	0.633	0.482	0.448	0.484	0.480
Education: Some college	0.236	0.167	0.234	0.014	0.170	0.193	0.165	0.526
Education: Bachelor or Associate	0.308	0.338	0.258	0.080	0.243	0.248	0.209	0.465
Education: Masters or above	0.066	0.076	0.099	0.269	0.105	0.111	0.142	0.304
Age: 18–34	0.110	0.137	0.123	0.426	0.134	0.127	0.154	0.592
Age: 25–34	0.206	0.221	0.214	0.851	0.229	0.240	0.201	0.478
Age: 35–44	0.236	0.211	0.222	0.630	0.225	0.216	0.217	0.933
Age: 45–54	0.220	0.199	0.202	0.690	0.200	0.211	0.201	0.900
Age: 55–64	0.204	0.209	0.210	0.974	0.196	0.191	0.205	0.904
Age: 65+	0.024	0.024	0.028	0.940	0.016	0.016	0.024	0.687
Liberal	0.170	0.155	0.250	0.004	0.334	0.316	0.346	0.667

Notes: The table presents average sample characteristics across treatments Precistribution, Redistribution, and Predistribution + Context, separately by country. It also presents p-values from an F-test in a regression of the characteristic on treatment indicators within each country.

Table A3: Heterogeneous Treatment Effect of Predistribution in the U.S.

	(1)	(2)	(3)	(4)	(5)
Predistribution	-0.070*** (0.026)	-0.083*** (0.031)	-0.086*** (0.031)	-0.095*** (0.033)	-0.100*** (0.033)
Liberal	0.013 (0.048)				
Predistribution x liberal	-0.176*** (0.062)				
High Education		-0.002 (0.036)			
Predistribution x High Education		-0.034 (0.048)			
High Income			-0.017 (0.037)		
Predistribution x High Income			-0.033 (0.048)		
High Age				0.037 (0.035)	
Predistribution x High Age				-0.002 (0.047)	
Male					0.028 (0.035)
Predistribution x Male					0.004 (0.047)
Constant	0.587*** (0.019)	0.590*** (0.023)	0.596*** (0.023)	0.571*** (0.024)	0.576*** (0.025)
Predistribution +	-0.245***	-0.117***	-0.118***	-0.097***	-0.095***
Predistribution x Group	(0.057)	(0.036)	(0.037)	(0.034)	(0.034)
Observations	1255	1255	1255	1255	1255

Notes: The table reports coefficient estimates from linear regressions. The dependent variable is the spectators' implemented Gini. *Predistribution* is a treatment indicator (Redistribution is the omitted category). Liberal is an indicator variable take a value of 1 if a spectator indicates their political leaning as "very left-wing" or "left-wing." High Education, High Income, and High Age are indicator variables equal to 1 if a spectator's education, income, or age, respectively, is above the median and 0 otherwise. Male is an indicator variable equal to 1 for males and 0 otherwise. The sample includes spectators in the U.S. HC3 standard errors in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table A4: Heterogeneous Treatment Effect of Predistribution in Sweden

	(1)	(2)	(3)	(4)	(5)
Predistribution	-0.125*** (0.025)	-0.073*** (0.026)	-0.060** (0.029)	-0.086*** (0.030)	-0.075** (0.030)
Liberal	-0.180*** (0.032)				
Predistribution x liberal	0.125*** (0.045)				
High Education		0.010 (0.034)			
Predistribution x High Education		-0.026 (0.044)			
High Income			0.027 (0.032)		
Predistribution x High Income			-0.046 (0.043)		
High Age				0.001 (0.032)	
Predistribution x High Age				0.009 (0.042)	
Male					0.044 (0.032)
Predistribution x Male					-0.013 (0.042)
Constant	0.529*** (0.019)	0.466*** (0.020)	0.456*** (0.022)	0.469*** (0.023)	0.446*** (0.023)
Predistribution +	0.001	-0.099*** (0.037)	-0.106*** (0.035)	-0.077*** (0.031)	-0.088*** (0.030)
Predistribution x Group					
Observations	1273	1273	1273	1273	1273

Notes: The table reports coefficient estimates from linear regressions. The dependent variable is the spectators' implemented Gini. *Predistribution* is a treatment indicator (Redistribution is the omitted category). Liberal is an indicator variable take a value of 1 if a spectator indicates their political leaning as "very left-wing" or "left-wing." High Education, High Income, and High Age are indicator variables equal to 1 if a spectator's education, income, or age, respectively, is above the median and 0 otherwise. Male is an indicator variable equal to 1 for males and 0 otherwise. The sample includes spectators in Sweden HC3 standard errors in parentheses.

* p <0.10, ** p <0.05, *** p <0.01

Table A5: Share Supporting (P)redistribution Policies

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Predistribution	0.037 (0.024)	0.199*** (0.025)	0.037 (0.024)	0.024 (0.015)	0.158*** (0.015)	0.246** (0.099)	0.815*** (0.094)
Sweden			-0.045** (0.022)				
Predistribution x Sweden			0.162*** (0.035)				
Constant	0.164*** (0.017)	0.119*** (0.014)	0.164*** (0.017)	0.158*** (0.023)	-0.010 (0.023)	-0.136* (0.072)	-0.303*** (0.064)
Observations	1003	1019	2022	2006	2038	1001	1015
Variation	Between	Between	Within	Within	Between	Between	Between
Country	U.S.	Sweden	Pooled	U.S.	Sweden	U.S.	Sweden

Notes: The table reports coefficient estimates from linear regressions. In Columns (1)-(3), the outcome variable is the share of participants supporting (p)redistribution policies, using the first policy they encounter: the predistribution policy in the Predistribution treatment and the redistribution policy in the Redistribution treatment. Support ranges on a 7-point scale from -3 (*Strong oppose*) to -3 (*Strong support*), and values above 0 are coded as supporting the policies. In Columns (4)-(5), we leverage the within-spectator variation, pooling their support for both types of policies. In Columns (5)-(6), the outcome variable is spectators' (continuous) support for (p)redistribution policies. *Predistribution* is a treatment indicator for being in the Predistribution treatment (relative to Treatment *Redistribution*), *Sweden* is an indicator for being in the Swedish sample (relative to the U.S. sample), and *Predistribution* \times *Sweden* is the interaction of these variables. HC3 standard errors in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

E Open-Ended Analysis

E.1 Procedures

This section details our analysis of the open-ended responses provided by spectators for their (p)redistribution decisions and their meta-choices. We analyze responses using a large language model (LLM) implemented via the OpenAI API. Our procedure closely follows that of Bartling and Srinivasan (2025). For each subgroup of spectators, the model first identifies the primary reason expressed in each response, groups semantically similar reasons, and calculates the frequency with which each reason appears. To reduce the noise inherent in LLM outputs, this step was repeated ten times. The resulting sets of reasons were then consolidated into a single list for each subgroup by merging overlapping reasons and computing their average frequency of occurrence. We employed model 5.1 and set a temperature parameter of 0 to get deterministic output. The exact code is part of the replication package. The following sections provide the output generated by the model.

E.2 Reasons for (P)redistribution Decisions in Redistribution x U.S.

1. Fairness and Equal Pay (28.4%): Both workers should be compensated equally, as they both contributed to the assignment and equal pay reflects fairness.
2. Productivity-Based Compensation (25.3%): The more productive worker should receive more compensation, rewarding higher effort and results.
3. Adherence to Original Terms (18.8%): Compensation should follow the original agreement made before the assignment; changing terms afterward is unfair.
4. Compensation for Effort (15.0%): Even a less productive worker should receive some compensation to acknowledge their effort and participation.
5. Uncertainty or Lack of Understanding (12.5%): Some participants were unsure or did not fully understand the situation, leading to indecisive or non-committal responses.

E.3 Reasons for (P)redistribution Decisions in Predistribution x U.S.

1. Fairness and Equal Pay / Equality in Payment (47.34%): Participants believe both workers should receive equal or fair pay for the same job, emphasizing fairness, equal treatment, and equality in compensation.
2. Rewarding Productivity (16.67%): Participants emphasize that the more productive worker should receive more pay as a reward for higher effort and contribution, reflecting a belief in merit-based compensation.
3. Compensation for Participation (13.33%): Participants argue that even the less productive worker should receive some compensation for their participation and effort, acknowledging their contribution despite lower productivity.
4. Uncertainty or Lack of Understanding (8.67%): Participants express confusion, uncertainty, or difficulty understanding the task or making a decision about the appropriate pay distribution.
5. Balancing Fairness and Incentive (4.67%): Participants highlight the need to balance fairness with incentivizing productivity, suggesting pay splits that reward higher productivity while still compensating the other worker.
6. Personal Beliefs or Preferences (3.33%): Participants base their decisions on personal values or preferences, such as a general liking for equality or personal experiences influencing their choice.
7. Opportunity for All (3.33%): Participants stress that everyone deserves a chance and focus on providing equal opportunities, regardless of initial productivity differences.
8. Adherence to Initial Agreement (2.67%): Participants believe in sticking to the initial agreement or pre-set terms, viewing changes to the rules after the fact as unfair.

E.4 Reasons for (P)redistribution Decisions in Redistribution x Sweden

1. Fairness / Equal Distribution (41.75%): Participants emphasized fairness and equality, often favoring equal or near-equal pay as the most just and equitable way to value both workers' efforts.
2. Rewarding Productivity (21.7%): Participants believed the more productive worker should receive more, arguing that higher output and hard work deserve greater compensation and should be incentivized.
3. Concerns about Measurement, Information, and Process (16.35%): Participants raised issues about how productivity was measured, the lack of detailed information, and whether the bonus structure and initial conditions were transparent and should be honored.
4. Both Workers Deserve Some Compensation (10.7%): Participants felt it was unacceptable for one worker to receive nothing and that both should receive at least some payment to acknowledge their participation.
5. Motivation and Encouragement (9.5%): Participants wanted to motivate the less productive worker by giving them some payment, believing this could encourage better performance in the future.

E.5 Reasons for (P)redistribution Decisions in Predistribution x Sweden

1. Fairness and Equality (42.09%): Emphasis on equal or fair pay for equal work, solidarity, and everyone deserving an equal or just share.
2. Rewarding Productivity (18.83%): Belief that higher productivity should be rewarded, giving the more productive worker a higher payment as an incentive.
3. Compensation for Effort (13.09%): Focus on ensuring both workers receive something for their effort, even if one is less productive.
4. Uncertainty and Lack of Information (13.71%): Expressions of indecision, not knowing what is best, or needing more information to make a fair decision.
5. Motivation and Encouragement (4.86%): Desire to encourage continued effort and improvement by compensating both workers.
6. Original Agreement (3.19%): Reference to sticking to the initial deal or promise about how workers should be paid.
7. Rationality and Reasonableness (8.23%): Choices justified as reasonable or sensible, without explicitly appealing to fairness or equality.
8. Ethical and Moral Considerations (1.00%): Reliance on moral or ethical principles, such as respect for workers and ensuring morally fair treatment.

E.6 Reasons for Meta-Choices in the U.S.

1. Performance-based compensation / Merit (28.8%): Compensation should reflect actual performance and productivity, rewarding those who work harder or achieve more.
2. Fairness and equality (26.0%): Ensuring fair and equal treatment between workers, either through equal pay or fair adjustments based on performance.
3. Upfront transparency and expectations (18.0%): Workers should know their potential or exact earnings before starting, providing a clear framework and avoiding surprises or disputes.
4. Indifference or neutrality (10.4%): No strong preference about timing or structure of compensation; the specifics do not matter much to these participants.
5. Confusion, uncertainty, or misunderstanding (7.9%): Participants were unsure about the scenario or how to respond, leading to unclear or non-committal answers.
6. Need for more information (3.5%): Preference to have all relevant information or to evaluate performance before deciding on compensation.
7. Motivation and incentives (3.0%): Emphasis on how pay structure and timing can motivate effort and influence worker behavior.
8. Avoiding bias and favoritism (1.7%): Desire to prevent biased or preferential treatment, often by using predetermined or objective pay rules.
9. Personal beliefs, preferences, or “common sense” (0.7%): Choices driven by personal values, comfort, or what seemed most logical without a specific focus on fairness or performance.

E.7 Reasons for Meta-Choices in Sweden

1. Clarity, Transparency, and Predictability Before Work (25.76%): Emphasis on clear, transparent, and pre-determined conditions or rules before work begins so everyone knows what to expect and misunderstandings are avoided.
2. Fairness, Equality, and Justice (21.23%): Focus on fair and equal treatment, including equal pay for equal work or compensation based on effort/productivity so that those who work harder or contribute more receive more.
3. Indifference or Uncertainty (16.65%): Participants expressed indifference, uncertainty, or lack of a strong opinion about when or how the decision is made.
4. Motivation, Incentives, and Productivity (13.95%): Highlighting that performance-based or productivity-linked pay can motivate workers and improve productivity.
5. Assessment After Work/Performance (9.67%): Preference for evaluating work after completion so that payment reflects actual effort, quality, and performance.

6. Adherence to Agreements and Contractual/Ethical Integrity (4.67%): Stress on sticking to initial agreements and setting terms contractually as a matter of principle, ethics, and prevention of exploitation.
7. Personal Intuition or Opinion (2.37%): Decisions based mainly on personal feelings, intuition, or subjective opinion without detailed reasoning.
8. Planning and Organization (1.05%): Importance of planning and organizing the decision-making and compensation process.
9. Context-Dependent Decisions (1.67%): View that the appropriate approach depends on the specific context or type of work.
10. Reasonableness (1.00%): Participants simply found the proposed approach reasonable without further specification.

F Additional Study

In this section, we describe the details and results of Study 2, which was conducted prior to Study 1, in January 2024. The full set of instructions for Study 2 can be found in Appendix Section H. The data collection, sample restriction, analyses, and hypothesis were pre-registered in the AEA registry (AEARCTR-0012985). Here, for the purpose of comparability, we present an empirical analysis that is analogous to the main empirical analysis pre-registered for Study 1 (the results from the pre-registered analysis are similar and are presented in detail in [?](#)).

Design: The recruitment and experimental design mirror those in Study 1, with two main differences. First, while workers’ incomes in Study 1 were determined by merit (based on their performance in the real-effort task), their incomes in Study 2 were determined by luck. Second, in Study 2, workers are informed about the payment scheme before completing the task, which can conflate spectators’ fairness views with their beliefs about the incentive effects of the payment scheme. To avoid this confound in Study 1, workers were informed about the payment scheme only after completing the assignment.

We also included an additional “Efficiency” treatment in Study 2, analogous to the efficiency treatment in Almås et al. (2020). In this treatment, redistribution was costly, in the sense that redistribution decreases the aggregate payoffs to the workers. Specifically, the spectators had the choice of leaving the workers’ earnings at $\{6, 0\}$, or changing the earnings to $\{4, 1\}$ or $\{2, 2\}$. This treatment was implemented for both Predistribution and Redistribution.

Lastly, in Study 2 we implemented a “Predistribution + No Default” treatment, which shares the feature of the “Predistribution + Context” treatment of Study 1 that there was no default worker earnings ($\{6, 0\}$). However, in Study 2, we did not vary the framing of the overall choice for the “Predistribution + No Default” treatment.

Recruitment: Spectators were recruited through the survey provider *Faktum AS*. For each treatment, we gathered data from roughly 250 US subjects and 250 Scandinavian subjects for a total of 2,631 subjects, where each group is nationally representative based on age, gender, and region of residence. We recruit workers from the online marketplace Amazon Mechanical Turk (mTurk), restricting to those residing in the U.S.

Treatments: In each country, spectators were randomized in a between-subjects design to one of two treatments—Ex-ante and Redistribution—that are very similar to those in Study 1, except for the differences highlighted above. Within each of these two treatments, participants are randomly assigned to Efficiency and No Efficiency treatments, with the former including an efficiency cost from (p)redistribution. This yields a 2×2 between-subjects design.

Results: Table A1 presents results from linear regressions. The dependent variable is the implemented Gini, and the explanatory variables are treatment indicators. In Models 5 and 6, we find evidence that the implemented inequality is lower in the Predistribution treatments, analogous to our results for Study 1. However, Models 1- 4 highlight that we only find a statistically significant negative effect of Predistribution on the implemented inequality in our US sample (note, however, that our sample size for each treatment in Study 2 is roughly 250, compared to 500 in Study 1).

Table A6: Predistribution Luck Treatments (Study 2)

	(1)	(2)	(3)	(4)	(5)	(6)
Predistribution	-0.0355*	-0.0413**	-0.0101	-0.0113	-0.0358*	-0.0417**
	(0.0208)	(0.0207)	(0.0194)	(0.0191)	(0.0200)	(0.0198)
Predistribution + No Default	-0.0745***	-0.0806***	-0.0527**	-0.0561**	-0.0670***	-0.0728***
	(0.0275)	(0.0274)	(0.0255)	(0.0250)	(0.0256)	(0.0253)
Efficiency	0.0380*	0.0358*	0.0692***	0.0688***	0.0534***	0.0519***
	(0.0208)	(0.0207)	(0.0194)	(0.0191)	(0.0142)	(0.0140)
Sweden					-0.0349*	-0.0357*
					(0.0200)	(0.0198)
Pre×Sweden					0.0260	0.0308
					(0.0284)	(0.0281)
Pre+No Default×Sweden					0.00681	0.00896
					(0.0349)	(0.0344)
Constant	0.193***	0.206***	0.143***	0.165***	0.186***	0.200***
	(0.0178)	(0.0457)	(0.0165)	(0.0419)	(0.0157)	(0.0321)
<i>N</i>	1326	1326	1305	1305	2631	2631
Controls?	No	Yes	No	Yes	No	Yes
Country	US	US	Sweden	Sweden	Pooled	Pooled

Standard errors in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

G Experimental Instructions - Study 1 (Merit)

Treatment 1: Redistribution

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to **make a choice that has consequences for a real life situation**. A few days ago, two individuals, let us call them *worker A* and *worker B*, were recruited via an international online market place to conduct an assignment. These workers received a participation payment of **2 USD**.

After completing the assignment, the workers were told that their initial additional earnings from the assignment would be determined by their productivity. **The most productive worker would earn an additional 6 USD for the assignment and the other worker would earn nothing additional for the assignment.** However, they were also told that a third person would be informed about the assignment and who was the most productive worker, and would be given the opportunity to change how the additional earnings would be redistributed between the workers and thus determine their final earnings.

You are the third person and we now want you to choose how the additional earnings from the assignment will be redistributed between *worker A* and *worker B*. Your decision is completely anonymous. Since the workers are informed of your decision only after completing the assignment, your decision will **not** affect their productivity.

Worker A was most productive and earned an additional 6 USD for the assignment. Thus, *worker B* earned nothing additional for the assignment.

Please indicate your preferred choice:

- I do *not* change the additional earnings: worker A is paid 6 USD and worker B is paid 0 USD.
- I do change the additional earnings: worker A is paid 5 USD and worker B is paid 1 USD.
- I do change the additional earnings: worker A is paid 4 USD and worker B is paid 2 USD.
- I do change the additional earnings: worker A is paid 3 USD and worker B is paid 3 USD.

You and nineteen other respondents are matched to this pair of workers and make this decision. We will randomly select one of you to be the one whose decision will determine how the workers will be paid.

Treatment 2: Predistribution

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to **make a choice that has consequences for a real life situation**. In a few days, two individuals will be recruited via an international online market place to conduct an assignment. These workers will receive a participation payment of **2 USD**.

After completing the assignment, the workers will be told that their initial additional earnings from the assignment would be determined by their productivity. **The most productive worker would earn an additional 6 USD for the assignment and the other worker would earn nothing additional for the assignment.** However, they will also be told that a third person was informed about the assignment, and given the opportunity to change how the additional earnings would be distributed between the workers and thus determine their final earnings.

You are the third person and we now want you to choose how the additional earnings from the assignment will be distributed between the two workers. Your decision is completely anonymous. Since the workers are informed of your decision only after completing the assignment, your decision will **not** affect their productivity.

Please indicate your preferred choice:

- I do *not* change the additional earnings: the most productive worker is paid 6 USD and the other worker is paid 0 USD.
- I do change the additional earnings: the most productive worker is paid 5 USD and the other worker is paid 1 USD.
- I do change the additional earnings: the most productive worker is paid 4 USD and the other worker is paid 2 USD.
- I do change the additional earnings: the most productive worker is paid 3 USD and the other worker is paid 3 USD.

You and nineteen other respondents are matched to this pair of workers and make this decision. We will randomly select one of you to be the one whose decision will determine how the workers will be paid.

Treatment 3: Pre + Context

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to **make a choice that has consequences for a real life situation**. In a few days, two individuals will be recruited via an international online market place to conduct an assignment. These workers will receive a participation payment of 2 **USD**.

After completing the assignment, the workers will be told that their additional earnings from the assignment will be determined by their productivity and will be distributed between **a base payment to both workers and a top-up payment to the most productive worker**. However, they will also be told that a third person was informed about the assignment, and given the opportunity to change how the additional earnings would be distributed between the base payment and the top-up payment and thus determine their final earnings.

You are the third person and we now want you to choose how the additional earnings from the assignment will be distributed between the base payment and the top-up payment to the most productive worker. Your decision is completely anonymous. Since the workers are informed of your decision only after completing the assignment, your decision will **not** affect their productivity.

Please indicate your preferred choice:

- The base payment to both workers is 0 USD, and the top-up payment to the most productive worker is 6 USD.
- The base payment to both workers is 1 USD, and the top-up payment to the most productive worker is 4 USD.
- The base payment to both workers is 2 USD, and the top-up payment to the most productive worker is 2 USD.
- The base payment to both workers is 3 USD, and the top-up payment to the most productive worker is 0 USD.

You and nineteen other respondents are matched to this pair of workers and make this decision. We will randomly select one of you to be the one whose decision will determine how the workers will be paid.

G.1 Additional Questions: Treatment 1 Redistribution

Question 1:

Please provide a brief explanation for your answer to the last question.
(Please use the text box below and write as much as you like. Your opinions and thoughts are important to us.)

Question 2A:

We conducted two different versions of this survey. In your version of the survey, you were asked to choose how the additional earnings from the assignment would be redistributed between the two workers after they earn these incomes.

In the other version of the survey, we asked participants to choose how the additional earnings from the assignment would be distributed between the two workers before they earn these incomes.

Which version do you prefer?

- I prefer to determine individuals' incomes before they earn these incomes
- I prefer to determine individuals' incomes after they earn these incomes
- I am indifferent between determining individuals' incomes before or after they earn these incomes

Question 3:

Please provide a brief explanation for your answer to the last question. (*Please use the text box below and write as much as you like. Your opinions and thoughts are important to us.*)

Attention check:

This is an attention check question, please select "Somewhat agree".

[Strongly disagree; Somewhat disagree; Neither agree nor disagree; Somewhat agree; Strongly agree]

Question 4A:

Some government policies determine individuals' incomes after they earn these incomes. Examples include: (i) Cash transfers to low-income earners and (ii) Taxes on high-income

earners.

To what extent do you support or oppose government policies that determine individuals' incomes after they earn these incomes?

[Strongly oppose; Oppose; Slightly oppose; Neither oppose nor support; Slightly support; Support; Strongly support]

Question 5A:

Some government policies determine individuals' incomes before they earn these incomes. Examples include: (i) Minimum wage laws and (ii) Salary-cap rules that limit very high salaries within a company.

To what extent do you support or oppose government policies that determine individuals' incomes before they earn these incomes?

[Strongly oppose; Oppose; Slightly oppose; Neither oppose nor support; Slightly support; Support; Strongly support]

Question 6:

How would you describe your attitude on economic policy?

- Very left-wing
- Left-wing
- Moderate
- Right-wing
- Very right-wing

Question 7:

What is your household's annual income before taxes are deducted?

[Less than \$30,000; \$30,000-\$59,999; \$60,000-\$99,999; \$100,000-\$149,999; \$150,000 and over]

G.2 Additional Questions: Treatment 2 Predistribution

G.2.1 Question 1:

Please provide a brief explanation for your answer to the last question.

(Please use the text box below and write as much as you like. Your opinions and thoughts are important to us.)

Question 2B:

We conducted two different versions of this survey. In your version of the survey, you were asked to choose how the additional earnings from the assignment would be distributed between the two workers before they earn these incomes.

In the other version of the survey, we asked participants to choose how the additional earnings from the assignment would be redistributed between the two workers after they earn these incomes.

Which version do you prefer?

- I prefer to determine individuals' incomes before they earn these incomes
- I prefer to determine individuals' incomes after they earn these incomes
- I am indifferent between determining individuals' incomes before or after they earn these incomes

Question 3:

Please provide a brief explanation for your answer to the last question. *(Please use the text box below and write as much as you like. Your opinions and thoughts are important to us.)*

Attention check:

This is an attention check question, please select "Somewhat agree".

[Strongly disagree; Somewhat disagree; Neither agree nor disagree; Somewhat agree; Strongly agree]

Question 4A:

Some government policies determine individuals' incomes before they earn these incomes. Examples include: (i) Minimum wage laws and (ii) Salary-cap rules that limit very high salaries within a company.

To what extent do you support or oppose government policies that determine individuals' incomes before they earn these incomes?

[Strongly oppose; Oppose; Slightly oppose; Neither oppose nor support; Slightly support; Support; Strongly support]

Question 5A:

Some government policies determine individuals' incomes after they earn these incomes. Examples include: (i) Cash transfers to low-income earners and (ii) Taxes on high-income earners.

To what extent do you support or oppose government policies that determine individuals' incomes after they earn these incomes?

[Strongly oppose; Oppose; Slightly oppose; Neither oppose nor support; Slightly support; Support; Strongly support]

Question 6:

How would you describe your attitude on economic policy?

- Very left-wing
- Left-wing
- Moderate
- Right-wing
- Very right-wing

Question 7:

What is your household's annual income before taxes are deducted?

[Less than \$30,000; \$30,000-\$59,999; \$60,000-\$99,999; \$100,000-\$149,999; \$150,000 and over]

G.3 Demographics

What is your age?

What is your gender? [Male; Female; Other]

What is the highest level of education you have completed? [Below high school; High school diploma; Some college, no degree; Associate's degree; Bachelor's degree; Master's degree or higher]

G.4 Consent

General Information

Welcome! This is an academic study conducted by researchers at the Norwegian School of Economics.

Procedures

This study takes approximately 10 minutes and participation is voluntary. You may drop out of this study at any time with no penalties or consequences of any kind. You are only allowed to participate in this study once.

Confidentiality

The collected data in this study will be used only for research purposes and shared in anonymized form in open science repositories in ways that will not reveal who you are.

Questions

If you have questions or comments about this study, you may contact the researchers at justin.valasek@nhh.no.

Consent

By participating in this study, you indicate that you are 18 years of age or older, that you understand the above information, and that you voluntarily agree to participate in this study.

Do you consent to these terms?

- Yes
- No

H Experimental Instructions - Study 2 (Luck)

Block 1: (P)redistribution decisions

[If Treatment = Redistribution]

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to make a choice that has consequences for a real life situation. A few days ago two individuals, let us call them worker A and worker B, were recruited via an international online market place to conduct an assignment.

Worker A and worker B were each offered a participation compensation of 2 USD regardless of what they were paid for completing the assignment. After they had completed the assignment, they were told that it was randomly decided that one of them would earn an additional 6 USD for the work on the assignment while the other would not earn anything additional for the work on the assignment. However, they were also told that a third person could change how the additional earnings would be divided between the two of them and thus determine how much they were paid for the assignment.

You are the third person and we now want you to choose whether to change the earnings for the assignment between worker A and worker B. Your decision is completely anonymous. The workers will receive the payment that you choose for the assignment within a few days, but will not receive any further information.

Worker A was randomly selected to earn 6 USD for the assignment, thus worker B earned nothing for the assignment. Please state which of the following alternatives you choose:

I do not change the earnings:

- worker A is paid 6 USD and worker B is paid 0 USD.

I do change the earnings:

- worker A is paid 5 USD and worker B is paid 1 USD.
- worker A is paid 4 USD and worker B is paid 2 USD.
- worker A is paid 3 USD and worker B is paid 3 USD.

[If Treatment = Predistribution]

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to make a choice that has consequences for a real life situation. In a few days two individuals, let us call them worker A and worker B, will be recruited via an international online market place to conduct an assignment.

Worker A and worker B will each be offered a participation compensation of 2 USD regardless of what they are paid for completing the assignment. Before completing the assignment, they will be told that their earnings from the assignment will be randomly determined and that one worker would earn 6 USD for the assignment and the other worker would earn nothing for the assignment. They will also be told that a third person was given the opportunity to change how the additional earnings would be divided between the two of them and thus determine how much they will be paid for the assignment. Prior to completing the assignment the workers will be informed about the third person's decision on the division of their earnings.

You are the third person and we now want you to choose how the earnings will be divided between the two workers. Your decision will be completely anonymous. The workers will receive the payment according to your choice for the assignment within a few days, but will not receive any further information.

Please state which of the following alternatives you choose:

I do not change the earnings:

- one worker is paid 6 USD and the other worker is paid 0 USD.

I do change the earnings:

- one worker is paid 5 USD and the other worker is paid 1 USD.
- one worker is paid 4 USD and the other worker is paid 2 USD.
- one worker is paid 3 USD and the other worker is paid 3 USD.

[If Treatment = Redistribution \times Efficiency]

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to make a choice that has consequences for a real life situation. A few days ago two individuals, let us call them worker A and worker B, were recruited via an international online market place to conduct an assignment.

Worker A and worker B were each offered a participation compensation of 2 USD regardless of what they were paid for completing the assignment. After they had completed the assignment, they were told that it was randomly decided that one of them would earn an additional 6 USD for the work on the assignment while the other would not earn anything additional for the work on the assignment. However, they were also told that a third person could change how the additional earnings would be divided between the two of them and thus determine how much they were paid for the assignment.

You are the third person and we now want you to choose whether to change the earnings for the assignment between worker A and worker B. Your decision is completely anonymous. The workers will receive the payment that you choose for the assignment within a few days, but will not receive any further information.

Worker A was randomly selected to earn 6 USD for the assignment, thus worker B earned nothing for the assignment. If you choose to change the earnings, allocating an additional 1 USD to worker B will reduce worker A's earnings by 2 USD. Please state which of the following alternatives you choose:

I do not change the earnings:

- worker A is paid 6 USD and worker B is paid 0 USD.

I do change the earnings:

- worker A is paid 4 USD and worker B is paid 1 USD.
- worker A is paid 2 USD and worker B is paid 2 USD.

[If Treatment = Predistribution \times Efficiency]

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to make a choice that has consequences for a real life situation. In a few days two individuals, let us call them worker A and worker B, will be recruited via an international online market place to conduct an assignment.

Worker A and worker B will each be offered a participation compensation of 2 USD regardless of what they are paid for completing the assignment. Before completing the assignment, they will be told that their earnings from the assignment will be randomly determined and that one worker would earn 6 USD for the assignment and the other worker would earn nothing for the assignment. They will also be told that a third person was given the opportunity to change how the additional earnings would be divided between the two of them and thus determine how much they will be paid for the assignment. Prior to completing the assignment the workers will be informed about the third person's decision on the division of their earnings.

You are the third person and we now want you to choose how the earnings will be divided between the two workers. Your decision will be completely anonymous. The workers will receive the payment according to your choice for the assignment within a few days, but will not receive any further information.

Note that allocating an additional 1 USD to the second worker will reduce first worker's earnings by 2 USD. Please state which of the following alternatives you choose:

I do not change the earnings:

- one worker is paid 6 USD and the other worker is paid 0 USD.

I do change the earnings:

- one worker is paid 4 USD and the other worker is paid 1 USD.
- one worker is paid 2 USD and the other worker is paid 2 USD.

[If Treatment = Predistribution \times No-Default]

In contrast to traditional survey questions that are about hypothetical situations, we now ask you to make a choice that has consequences for a real life situation. In a few days two individuals will be recruited via an international online market place to conduct an assignment.

The workers will each be offered a participation compensation of 2 USD regardless of what they are paid for completing the assignment. Before completing the assignment, the workers will be told that a third person chose how the earnings for completing the assignment would be divided between the two of them, and they will be informed about the third person's choice.

You are the third person and we now want you to choose how the earnings will be divided between the two workers. Your decision will be completely anonymous. The workers will receive the payment according to your choice for the assignment within a few days, but will not receive any further information.

Please state which of the following alternatives you choose:

- one worker is randomly selected to be paid 6 USD and the other worker is paid 0 USD.
- one worker is randomly selected to be paid 5 USD and the other worker is paid 1 USD.
- one worker is randomly selected to be paid 4 USD and the other worker is paid 2 USD.
- both workers are paid 3 USD.

Block 2: Additional Questions

To what extent do you agree or disagree with the statement: "You are generally willing to take risks."

[Strongly agree; Somewhat agree; Neither agree nor disagree; Somewhat disagree; Strongly disagree]

Out of 100 workers, how many do you think would quit the job after learning that they have a 50 percent chance to earn 6 USD in addition from the assignment, and a 50 percent chance to earn nothing in addition?

[0 to 100]

Out of 100 workers, how many do you think would quit the job after learning that they would earn 3 USD in addition from the assignment?

[0 to 100]

Block 3: Policy Views

Do you think income differences between rich and poor people are a problem?

[Not a problem at all; A small problem; A problem; A serious problem; A very serious problem]

To what extent do you think that differences in income are caused by differences in people's effort over their lifetime or rather by luck?

[Only luck; Mainly luck; Equally important; Mainly effort; Only effort]

To what extent do you agree or disagree with the statement: *The national government should aim to reduce the economic differences between the rich and the poor.*

[Strongly agree; Somewhat agree; Neither agree nor disagree; Somewhat disagree; Strongly disagree]

How would you describe your attitude on economic policy?

[Very left-wing; Left-wing; Moderate; Right-wing; Very right-wing]

Block 4: Demographics

What is your age?

What is your gender?

What is the highest level of education you have completed?

Is your annual income above or below \$48,000 / 317,000kr?